Suppr超能文献

精细结构和包络中,耳间时间差线索的率依赖神经反应。

Rate dependent neural responses of interaural-time-difference cues in fine-structure and envelope.

机构信息

SOUND Lab, Cambridge Hearing Group, Department of Clinical Neuroscience, Cambridge University, Cambridge, United Kingdom.

Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.

出版信息

PeerJ. 2024 Apr 24;12:e17104. doi: 10.7717/peerj.17104. eCollection 2024.

Abstract

Advancements in cochlear implants (CIs) have led to a significant increase in bilateral CI users, especially among children. Yet, most bilateral CI users do not fully achieve the intended binaural benefit due to potential limitations in signal processing and/or surgical implant positioning. One crucial auditory cue that normal hearing (NH) listeners can benefit from is the interaural time difference (ITD), ., the time difference between the arrival of a sound at two ears. The ITD sensitivity is thought to be heavily relying on the effective utilization of temporal fine structure (very rapid oscillations in sound). Unfortunately, most current CIs do not transmit such true fine structure. Nevertheless, bilateral CI users have demonstrated sensitivity to ITD cues delivered through envelope or interaural pulse time differences, ., the time gap between the pulses delivered to the two implants. However, their ITD sensitivity is significantly poorer compared to NH individuals, and it further degrades at higher CI stimulation rates, especially when the rate exceeds 300 pulse per second. The overall purpose of this research thread is to improve spatial hearing abilities in bilateral CI users. This study aims to develop electroencephalography (EEG) paradigms that can be used with clinical settings to assess and optimize the delivery of ITD cues, which are crucial for spatial hearing in everyday life. The research objective of this article was to determine the effect of CI stimulation pulse rate on the ITD sensitivity, and to characterize the rate-dependent degradation in ITD perception using EEG measures. To develop protocols for bilateral CI studies, EEG responses were obtained from NH listeners using sinusoidal-amplitude-modulated (SAM) tones and filtered clicks with changes in either fine structure ITD (ITD) or envelope ITD (ITD). Multiple EEG responses were analyzed, which included the subcortical auditory steady-state responses (ASSRs) and cortical auditory evoked potentials (CAEPs) elicited by stimuli onset, offset, and changes. Results indicated that acoustic change complex (ACC) responses elicited by ITD changes were significantly smaller or absent compared to those elicited by ITD changes. The ACC morphologies evoked by ITD changes were similar to onset and offset CAEPs, although the peak latencies were longest for ACC responses and shortest for offset CAEPs. The high-frequency stimuli clearly elicited subcortical ASSRs, but smaller than those evoked by lower carrier frequency SAM tones. The 40-Hz ASSRs decreased with increasing carrier frequencies. Filtered clicks elicited larger ASSRs compared to high-frequency SAM tones, with the order being 40 > 160 > 80> 320 Hz ASSR for both stimulus types. Wavelet analysis revealed a clear interaction between detectable transient CAEPs and 40-Hz ASSRs in the time-frequency domain for SAM tones with a low carrier frequency.

摘要

人工耳蜗 (CI) 的进步使得双侧 CI 用户,尤其是儿童,显著增加。然而,由于信号处理和/或手术植入定位的潜在限制,大多数双侧 CI 用户并未充分获得预期的双耳益处。正常听力 (NH) 听众可以受益的一个关键听觉线索是耳间时间差 (ITD),即声音到达双耳的时间差。ITD 敏感性被认为严重依赖于时间精细结构的有效利用(声音的快速波动)。不幸的是,目前大多数 CI 都无法传输这种真正的精细结构。然而,双侧 CI 用户已经表现出对通过包络或耳间脉冲时间差传递的 ITD 线索的敏感性,即两个植入物之间的脉冲间隔。然而,与 NH 个体相比,他们的 ITD 敏感性要差得多,并且在更高的 CI 刺激率下进一步降低,尤其是当刺激率超过 300 脉冲/秒时。本研究的总体目的是提高双侧 CI 用户的空间听觉能力。本研究旨在开发可用于临床评估的脑电图 (EEG) 范式,以评估和优化 ITD 线索的传递,这对日常生活中的空间听觉至关重要。本文的研究目的是确定 CI 刺激脉冲率对 ITD 敏感性的影响,并使用 EEG 测量来描述 ITD 感知的率依赖性退化。为了开发双侧 CI 研究方案,使用正弦幅度调制 (SAM) 音调以及具有精细结构 ITD(ITD)或包络 ITD(ITD)变化的滤波点击,从 NH 听众中获得 EEG 响应。分析了多个 EEG 响应,包括由刺激起始、结束和变化引起的皮质听觉诱发电位 (CAEP) 和皮质下听觉稳态响应 (ASSR)。结果表明,与 ITD 变化引起的 ACC 反应相比,由 ITD 变化引起的声刺激复合 (ACC) 反应明显较小或不存在。由 ITD 变化引起的 ACC 形态与起始和结束 CAEP 相似,尽管 ACC 反应的峰潜伏期最长,而结束 CAEP 的最短。高频刺激明显诱发了皮质下 ASSR,但比低频载波 SAM 音调诱发的 ASSR 小。40Hz ASSR 随载波频率的增加而减小。与高频 SAM 音调相比,滤波点击引起更大的 ASSR,对于两种类型的刺激,其顺序为 40 > 160 > 80 > 320 Hz ASSR。小波分析表明,对于低载波频率的 SAM 音调,在时间-频率域中,可检测到的瞬态 CAEP 和 40Hz ASSR 之间存在明显的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebe/11055513/5da0237236ef/peerj-12-17104-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验