Wang Qiyou, Gong Yujie, Zi Xin, Gan Lei, Pensa Evangelina, Liu Yuxiang, Xiao Yusen, Li Hongmei, Liu Kang, Fu Junwei, Liu Jun, Stefancu Andrei, Cai Chao, Chen Shanyong, Zhang Shiguo, Lu Ying-Rui, Chan Ting-Shan, Ma Chao, Cao Xueying, Cortés Emiliano, Liu Min
Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China.
Engineering and Research Center for Integrated New Energy Photovoltaics and Energy Storage Systems of Hunan Province, School of Electrical Engineering, University of South China, Hengyang, 421001, Hunan, P.R. China.
Angew Chem Int Ed Engl. 2024 Jul 8;63(28):e202405438. doi: 10.1002/anie.202405438. Epub 2024 Jun 12.
The alkaline oxygen evolution reaction (OER) is a promising avenue for producing clean fuels and storing intermittent energy. However, challenges such as excessive OH consumption and strong adsorption of oxygen-containing intermediates hinder the development of alkaline OER. In this study, we propose a cooperative strategy by leveraging both nano-scale and atomically local electric fields for alkaline OER, demonstrated through the synthesis of Mn single atom doped CoP nanoneedles (Mn SA-CoP NNs). Finite element method simulations and density functional theory calculations predict that the nano-scale local electric field enriches OH around the catalyst surface, while the atomically local electric field improves *O desorption. Experimental validation using in situ attenuated total reflection infrared and Raman spectroscopy confirms the effectiveness of the nano-scale and atomically electric fields. Mn SA-CoP NNs exhibit an ultra-low overpotential of 189 mV at 10 mA cm and stable operation over 100 hours at ~100 mA cm during alkaline OER. This innovative strategy provides new insights for enhancing catalyst performance in energy conversion reactions.
碱性析氧反应(OER)是生产清洁燃料和存储间歇性能量的一条有前景的途径。然而,诸如OH过度消耗和含氧中间体的强吸附等挑战阻碍了碱性OER的发展。在本研究中,我们提出了一种通过利用纳米尺度和原子局部电场来实现碱性OER的协同策略,通过合成Mn单原子掺杂的CoP纳米针(Mn SA-CoP NNs)得以证明。有限元方法模拟和密度泛函理论计算预测,纳米尺度局部电场使催化剂表面周围的OH富集,而原子局部电场改善*O脱附。使用原位衰减全反射红外和拉曼光谱进行的实验验证证实了纳米尺度和原子电场的有效性。Mn SA-CoP NNs在碱性OER过程中,在10 mA cm时表现出189 mV的超低过电位,并在~100 mA cm下稳定运行超过100小时。这种创新策略为提高能量转换反应中的催化剂性能提供了新的见解。