Suppr超能文献

αβ 整合素各结构域对其延伸的贡献:多尺度建模的见解。

Contributions of the individual domains of αβ integrin to its extension: Insights from multiscale modeling.

机构信息

Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.

出版信息

Cytoskeleton (Hoboken). 2024 Aug;81(8):393-408. doi: 10.1002/cm.21865. Epub 2024 Apr 29.

Abstract

The platelet integrin αβ undergoes long-range conformational transitions between bent and extended conformations to regulate platelet aggregation during hemostasis and thrombosis. However, how exactly αβ transitions between conformations remains largely elusive. Here, we studied how transitions across bent and extended-closed conformations of αβ integrin are regulated by effective interactions between its functional domains. We first carried out μs-long equilibrium molecular dynamics (MD) simulations of full-length αβ integrins in bent and intermediate conformations, the latter characterized by an extended headpiece and closed legs. Then, we built heterogeneous elastic network models, perturbed inter-domain interactions, and evaluated their relative contributions to the energy barriers between conformations. Results showed that integrin extension emerges from: (i) changes in interfaces between functional domains; (ii) allosteric coupling of the head and upper leg domains with flexible lower leg domains. Collectively, these results provide new insights into integrin conformational activation based on short- and long-range interactions between its functional domains and highlight the importance of the lower legs in the regulation of integrin allostery.

摘要

血小板整合素 αβ 经历长程构象转变,从弯曲构象转变为伸展构象,从而调节止血和血栓形成过程中的血小板聚集。然而,αβ 如何在构象之间转变在很大程度上仍不清楚。在这里,我们研究了 αβ 整合素功能域之间的有效相互作用如何调节其从弯曲和伸展-闭合构象之间的转变。我们首先对弯曲和中间构象的全长 αβ 整合素进行了长达 μs 的平衡分子动力学(MD)模拟,后者的特征是延伸的头部和闭合的腿部。然后,我们构建了异质弹性网络模型,干扰了域间相互作用,并评估了它们对构象之间能量势垒的相对贡献。结果表明,整合素的延伸源于:(i)功能域之间界面的变化;(ii)头部和上腿域与柔性下腿域的变构耦合。总的来说,这些结果基于其功能域之间的短程和长程相互作用,为整合素构象激活提供了新的见解,并强调了下腿在整合素变构调节中的重要性。

相似文献

1
Contributions of the individual domains of αβ integrin to its extension: Insights from multiscale modeling.
Cytoskeleton (Hoboken). 2024 Aug;81(8):393-408. doi: 10.1002/cm.21865. Epub 2024 Apr 29.
2
Data-driven prediction of αβ integrin activation paths using manifold learning and deep generative modeling.
Biophys J. 2024 Sep 3;123(17):2716-2729. doi: 10.1016/j.bpj.2023.12.009. Epub 2023 Dec 14.
3
Conformational response of αβ and αβ integrins to force.
Structure. 2025 Feb 6;33(2):289-299.e4. doi: 10.1016/j.str.2024.11.016. Epub 2024 Dec 19.
4
Myosin light chain 6 (Myl6) interacts with kindlin-3 and is required to support integrin αβ activation in platelets in mice.
J Thromb Haemost. 2024 Jul;22(7):2009-2017. doi: 10.1016/j.jtha.2024.01.007. Epub 2024 Jan 22.
5
Integrin αβ intermediates: From molecular dynamics to adhesion assembly.
Biophys J. 2023 Feb 7;122(3):533-543. doi: 10.1016/j.bpj.2022.12.032. Epub 2022 Dec 23.
6
Full-length αIIbβ3 cryo-EM structure reveals intact integrin initiate-activation intrinsic architecture.
Structure. 2024 Jul 11;32(7):899-906.e3. doi: 10.1016/j.str.2024.03.006. Epub 2024 Apr 4.
8
Antagonistic Roles of Human Platelet Integrin αIIbβ3 and Chemokines in Regulating Neutrophil Activation and Fate on Arterial Thrombi Under Flow.
Arterioscler Thromb Vasc Biol. 2023 Sep;43(9):1700-1712. doi: 10.1161/ATVBAHA.122.318767. Epub 2023 Jul 6.
10
Modeling platelet P2Y pathway to integrin activation.
Biophys J. 2025 May 20;124(10):1618-1630. doi: 10.1016/j.bpj.2025.04.004. Epub 2025 Apr 8.

本文引用的文献

1
Full-length αIIbβ3 cryo-EM structure reveals intact integrin initiate-activation intrinsic architecture.
Structure. 2024 Jul 11;32(7):899-906.e3. doi: 10.1016/j.str.2024.03.006. Epub 2024 Apr 4.
2
Force-Regulated Spontaneous Conformational Changes of Integrins αβ and αβ.
ACS Nano. 2024 Jan 9;18(1):299-313. doi: 10.1021/acsnano.3c06253. Epub 2023 Dec 17.
3
Data-driven prediction of αβ integrin activation paths using manifold learning and deep generative modeling.
Biophys J. 2024 Sep 3;123(17):2716-2729. doi: 10.1016/j.bpj.2023.12.009. Epub 2023 Dec 14.
4
OpenMSCG: A Software Tool for Bottom-Up Coarse-Graining.
J Phys Chem B. 2023 Oct 12;127(40):8537-8550. doi: 10.1021/acs.jpcb.3c04473. Epub 2023 Oct 4.
5
Structure, signal transduction, activation, and inhibition of integrin αIIbβ3.
Thromb J. 2023 Feb 13;21(1):18. doi: 10.1186/s12959-023-00463-w.
6
Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review.
Cells. 2023 Jan 14;12(2):324. doi: 10.3390/cells12020324.
7
Integrin αβ intermediates: From molecular dynamics to adhesion assembly.
Biophys J. 2023 Feb 7;122(3):533-543. doi: 10.1016/j.bpj.2022.12.032. Epub 2022 Dec 23.
8
Integrin Conformational Dynamics and Mechanotransduction.
Cells. 2022 Nov 12;11(22):3584. doi: 10.3390/cells11223584.
9
Dynamics of integrin α5β1, fibronectin, and their complex reveal sites of interaction and conformational change.
J Biol Chem. 2022 Sep;298(9):102323. doi: 10.1016/j.jbc.2022.102323. Epub 2022 Aug 2.
10
Structural insights into integrin αβ opening by fibronectin ligand.
Sci Adv. 2021 May 7;7(19). doi: 10.1126/sciadv.abe9716. Print 2021 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验