Peng Yuxing, Pak Alexander J, Durumeric Aleksander E P, Sahrmann Patrick G, Mani Sriramvignesh, Jin Jaehyeok, Loose Timothy D, Beiter Jeriann, Voth Gregory A
NVIDIA Corporation, 2788 San Tomas Expressway, Santa Clara, California 95051, United States.
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States.
J Phys Chem B. 2023 Oct 12;127(40):8537-8550. doi: 10.1021/acs.jpcb.3c04473. Epub 2023 Oct 4.
The "bottom-up" approach to coarse-graining, for building accurate and efficient computational models to simulate large-scale and complex phenomena and processes, is an important approach in computational chemistry, biophysics, and materials science. As one example, the Multiscale Coarse-Graining (MS-CG) approach to developing CG models can be rigorously derived using statistical mechanics applied to fine-grained, i.e., all-atom simulation data for a given system. Under a number of circumstances, a systematic procedure, such as MS-CG modeling, is particularly valuable. Here, we present the development of the OpenMSCG software, a modularized open-source software that provides a collection of successful and widely applied bottom-up CG methods, including Boltzmann Inversion (BI), Force-Matching (FM), Ultra-Coarse-Graining (UCG), Relative Entropy Minimization (REM), Essential Dynamics Coarse-Graining (EDCG), and Heterogeneous Elastic Network Modeling (HeteroENM). OpenMSCG is a high-performance and comprehensive toolset that can be used to derive CG models from large-scale fine-grained simulation data in file formats from common molecular dynamics (MD) software packages, such as GROMACS, LAMMPS, and NAMD. OpenMSCG is modularized in the Python programming framework, which allows users to create and customize modeling "recipes" for reproducible results, thus greatly improving the reliability, reproducibility, and sharing of bottom-up CG models and their applications.
自底向上的粗粒化方法,用于构建准确且高效的计算模型以模拟大规模和复杂的现象及过程,是计算化学、生物物理学和材料科学中的一种重要方法。例如,开发粗粒化(CG)模型的多尺度粗粒化(MS-CG)方法可以通过将统计力学应用于细粒度,即给定系统的全原子模拟数据来严格推导得出。在许多情况下,像MS-CG建模这样的系统程序特别有价值。在此,我们展示了OpenMSCG软件的开发,这是一个模块化的开源软件,它提供了一系列成功且广泛应用的自底向上的CG方法,包括玻尔兹曼反演(BI)、力匹配(FM)、超粗粒化(UCG)、相对熵最小化(REM)、本质动力学粗粒化(EDCG)和异质弹性网络建模(HeteroENM)。OpenMSCG是一个高性能且全面的工具集,可用于从常见分子动力学(MD)软件包(如GROMACS、LAMMPS和NAMD)的文件格式中的大规模细粒度模拟数据推导CG模型。OpenMSCG在Python编程框架中进行了模块化,这允许用户创建和定制建模“配方”以获得可重复的结果,从而极大地提高了自底向上的CG模型及其应用的可靠性、可重复性和共享性。