Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine.
Department of Ophthalmology, University of California, San Franciso.
J Vis Exp. 2024 Apr 12(206). doi: 10.3791/66779.
The study of behavioral responses to visual stimuli is a key component of understanding visual system function. One notable response is the optokinetic reflex (OKR), a highly conserved innate behavior necessary for image stabilization on the retina. The OKR provides a robust readout of image tracking ability and has been extensively studied to understand visual system circuitry and function in animals from different genetic backgrounds. The OKR consists of two phases: a slow tracking phase as the eye follows a stimulus to the edge of the visual plane and a compensatory fast phase saccade that resets the position of the eye in the orbit. Previous methods of tracking gain quantification, although reliable, are labor intensive and can be subjective or arbitrarily derived. To obtain more rapid and reproducible quantification of eye tracking ability, we have developed a novel semi-automated analysis program, PyOKR, that allows for quantification of two-dimensional eye tracking motion in response to any directional stimulus, in addition to being adaptable to any type of video-oculography equipment. This method provides automated filtering, selection of slow tracking phases, modeling of vertical and horizontal eye vectors, quantification of eye movement gains relative to stimulus speed, and organization of resultant data into a usable spreadsheet for statistical and graphical comparisons. This quantitative and streamlined analysis pipeline, readily accessible via PyPI import, provides a fast and direct measurement of OKR responses, thereby facilitating the study of visual behavioral responses.
对视觉刺激的行为反应的研究是理解视觉系统功能的一个关键组成部分。一种显著的反应是光运动反射(OKR),这是一种高度保守的先天行为,对于视网膜上的图像稳定是必要的。OKR 提供了一个强大的图像跟踪能力的读数,并被广泛研究,以了解来自不同遗传背景的动物的视觉系统电路和功能。OKR 由两个阶段组成:当眼睛跟随刺激到视觉平面的边缘时,眼睛缓慢跟踪阶段,以及补偿性的快速阶段扫视,它会重置眼睛在轨道中的位置。以前的跟踪增益量化方法虽然可靠,但劳动强度大,并且可能是主观的或任意推导的。为了更快速和可重复地量化眼睛跟踪能力,我们开发了一种新的半自动分析程序 PyOKR,它允许对二维眼睛跟踪运动进行量化,以响应任何方向的刺激,此外还可以适应任何类型的视频眼动记录设备。该方法提供了自动滤波、慢跟踪阶段的选择、垂直和水平眼睛向量的建模、相对于刺激速度的眼睛运动增益的量化,以及将结果数据组织成一个可用于统计和图形比较的有用电子表格。这种定量和简化的分析管道,可通过 PyPI 导入,提供了 OKR 反应的快速直接测量,从而促进了视觉行为反应的研究。