Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
J Mater Chem B. 2024 May 22;12(20):4935-4944. doi: 10.1039/d4tb00134f.
The oral cavity, a warm and moist environment, is prone to the proliferation of microorganisms like (), which forms robust biofilms on biotic and abiotic surfaces, leading to challenging infections. These biofilms are resistant to conventional treatments due to their resilience against antimicrobials and immune responses. The dynamic nature of the oral cavity, including the salivary flow and varying surface properties, complicates the delivery of therapeutic agents. To address these challenges, we introduce dendritic microparticles engineered for enhanced adhesion to dental surfaces and effective delivery of antifungal agents and antibiofilm enzymes. These microparticles are fabricated using a water-in-oil-in-water emulsion process involving a blend of poly(lactic--glycolic acid) (PLGA) random copolymer (RCP) and PLGA--poly(ethylene glycol) (PLGA--PEG) block copolymer (BCP), resulting in particles with surface dendrites that exhibit strong adhesion to oral surfaces. Our study demonstrates the potential of these adhesive microparticles for oral applications. The adhesion tests on various oral surfaces, including dental resin, hydroxyapatite, tooth enamel, and mucosal tissues, reveal superior adhesion of these microparticles compared to conventional spherical ones. Furthermore, the release kinetics of nystatin from these microparticles show a sustained release pattern that can kill . The biodegradation of these microparticles on tooth surfaces and their efficacy in preventing fungal biofilms have also been demonstrated. Our findings highlight the effectiveness of adhesive microparticles in delivering therapeutic agents within the oral cavity, offering a promising approach to combat biofilm-associated infections.
口腔是一个温暖潮湿的环境,容易滋生微生物,如 ,它们在生物和非生物表面形成坚固的生物膜,导致难以治疗的感染。这些生物膜具有抗微生物和免疫反应的弹性,因此对常规治疗具有抗性。口腔的动态性质,包括唾液流量和表面特性的变化,使治疗剂的输送变得复杂。为了解决这些挑战,我们引入了经过设计的树突状微粒,以增强对牙齿表面的附着力,并有效输送抗真菌剂和抗生物膜酶。这些微粒是使用水包油包水乳液工艺制造的,涉及聚(乳酸-乙醇酸)(PLGA)无规共聚物(RCP)和 PLGA-聚(乙二醇)(PLGA-PEG)嵌段共聚物(BCP)的混合物,形成具有表面树突的微粒,表现出对口腔表面的强烈附着力。我们的研究表明,这些粘附微粒具有用于口腔应用的潜力。在各种口腔表面(包括牙科树脂、羟基磷灰石、牙釉质和粘膜组织)上的附着力测试表明,与常规球形微粒相比,这些微粒具有优越的附着力。此外,这些微粒从制霉菌素的释放动力学显示出一种持续释放模式,可以杀死 。这些微粒在牙齿表面的生物降解及其预防真菌生物膜的功效也得到了证明。我们的研究结果突出了粘附微粒在口腔内输送治疗剂的有效性,为对抗生物膜相关感染提供了一种有前途的方法。