Clean Mobility & Thermofluids, Universitat Politècnica de València, Camino de Vera, s/n, València 46022, Spain.
Universitat Politècnica de València.
J Biomech Eng. 2024 Oct 1;146(10). doi: 10.1115/1.4065418.
Computational fluid dynamics (CFD) simulations are widely used to develop and analyze blood-contacting medical devices such as left ventricular assist devices (LVADs). This work presents an analysis of the transient behavior of two centrifugal LVADs with different designs: HeartWare VAD and HeartMate3. A scale-resolving methodology is followed through Large Eddy Simulations, which allows for the visualization of turbulent structures. The three-dimensional (3D) LVAD models are coupled to a zero-dimensional (0D) 2-element Windkessel model, which accounts for the vascular resistance and compliance of the arterial system downstream of the device. Furthermore, both continuous- and pulsatile-flow operation modes are analyzed. For the pulsatile conditions, the artificial pulse of HeartMate3 is imposed, leading to a larger variation of performance variables in HeartWare VAD than in HeartMate3. Moreover, CFD results of pulsatile-flow simulations are compared to those obtained by accessing the quasi-steady maps of the pumps. The quasi-steady approach is a predictive tool used to provide a preliminary approximation of the pulsatile evolution of flow rate, pressure head, and power, by only imposing a speed pulse and vascular parameters. This preliminary quasi-steady solution can be useful for deciding the characteristics of the pulsatile speed law before running a transient CFD simulation, as the former entails a significant reduction in computational cost in comparison to the latter.
计算流体动力学 (CFD) 模拟广泛用于开发和分析与血液接触的医疗设备,如左心室辅助装置 (LVAD)。本工作分析了两种具有不同设计的离心式 LVAD 的瞬态行为:HeartWare VAD 和 HeartMate3。采用大涡模拟方法进行尺度解析,从而可以可视化湍流结构。将三维 (3D) LVAD 模型与零维 (0D) 两元件 Windkessel 模型耦合,该模型考虑了设备下游动脉系统的血管阻力和顺应性。此外,还分析了连续流和脉动流两种工作模式。对于脉动条件,施加了 HeartMate3 的人工脉冲,导致 HeartWare VAD 的性能变量变化大于 HeartMate3。此外,还将脉动流模拟的 CFD 结果与通过访问泵的准稳态图获得的结果进行了比较。准稳态方法是一种预测工具,通过仅施加速度脉冲和血管参数,可提供流量、压力头和功率的脉动演化的初步近似。与瞬态 CFD 模拟相比,这种初步的准稳态解可以在运行之前有助于确定脉动速度规律的特征,因为前者相对于后者显著降低了计算成本。