Wang Yirong, Cheng Yaohui, Yin Chunchun, Zhang Jinming, You Jingxuan, Wang Jizheng, Wang Jinfeng, Zhang Jun
Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, People's Republic of China.
University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
Nanomicro Lett. 2024 Apr 29;16(1):183. doi: 10.1007/s40820-024-01400-w.
In perovskite solar cells (PSCs), the inherent defects of perovskite film and the random distribution of excess lead iodide (PbI) prevent the improvement of efficiency and stability. Herein, natural cellulose is used as the raw material to design a series of cellulose derivatives for perovskite crystallization engineering. The cationic cellulose derivative C-Im-CN with cyano-imidazolium (Im-CN) cation and chloride anion prominently promotes the crystallization process, grain growth, and directional orientation of perovskite. Meanwhile, excess PbI is transferred to the surface of perovskite grains or formed plate-like crystallites in local domains. These effects result in suppressing defect formation, decreasing grain boundaries, enhancing carrier extraction, inhibiting non-radiative recombination, and dramatically prolonging carrier lifetimes. Thus, the PSCs exhibit a high power conversion efficiency of 24.71%. Moreover, C-Im-CN has multiple interaction sites and polymer skeleton, so the unencapsulated PSCs maintain above 91.3% of their initial efficiencies after 3000 h of continuous operation in a conventional air atmosphere and have good stability under high humidity conditions. The utilization of biopolymers with excellent structure-designability to manage the perovskite opens a state-of-the-art avenue for manufacturing and improving PSCs.
在钙钛矿太阳能电池(PSC)中,钙钛矿薄膜的固有缺陷以及过量碘化铅(PbI)的随机分布阻碍了效率和稳定性的提高。在此,以天然纤维素为原料设计了一系列用于钙钛矿结晶工程的纤维素衍生物。具有氰基咪唑鎓(Im-CN)阳离子和氯离子阴离子的阳离子纤维素衍生物C-Im-CN显著促进了钙钛矿的结晶过程、晶粒生长和定向取向。同时,过量的PbI转移到钙钛矿晶粒表面或在局部区域形成板状微晶。这些作用导致抑制缺陷形成、减少晶界、增强载流子提取、抑制非辐射复合并显著延长载流子寿命。因此,PSC表现出24.71%的高功率转换效率。此外,C-Im-CN具有多个相互作用位点和聚合物骨架,因此未封装的PSC在传统空气气氛中连续运行3000小时后仍保持其初始效率的91.3%以上,并且在高湿度条件下具有良好的稳定性。利用具有优异结构可设计性的生物聚合物来调控钙钛矿,为制造和改进PSC开辟了一条先进的途径。