Suppr超能文献

晶界通过促进电荷分离对钙钛矿太阳能电池的性能有贡献。

Grain Boundaries Contribute to the Performance of Perovskite Solar Cells by Promoting Charge Separations.

作者信息

Xu Peng, Wang Pengfei, Wang Minhuan, Sun Fengke, Leng Jing, Shi Yantao, Jin Shengye, Tian Wenming

机构信息

Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, People's Republic of China.

State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.

出版信息

Nanomicro Lett. 2025 Jun 4;17(1):285. doi: 10.1007/s40820-025-01795-0.

Abstract

Historically seen as a limitation, grain boundaries (GBs) within polycrystalline metal halide perovskite (MHP) films are thought to impede charge transport, adversely impacting the efficiency of perovskite solar cells (PSCs). In this study, we employ home-built confocal photoluminescence microscopy, combined with photocurrent detection modules, to directly visualize the carrier dynamics in the MHP film of PSCs under real operating conditions. Our findings suggest that GBs in high-efficiency PSCs function as carrier transport channels, where a notable enhancement in photocurrent is observed. Femtosecond transient absorption and Kelvin probe force microscopy measurements further validate the existence of a built-in electric field in the vicinity of GBs, offering additional driving force for charge separation and establishing channels for swift carrier transport along the GBs, thereby expediting subsequent charge collection processes. This study elucidates the pivotal role of GBs in operational PSCs and provides valuable insights for the fabrication of high-efficiency PSCs.

摘要

从历史上看,多晶金属卤化物钙钛矿(MHP)薄膜中的晶界(GBs)被视为一种限制因素,人们认为它会阻碍电荷传输,对钙钛矿太阳能电池(PSC)的效率产生不利影响。在本研究中,我们采用自制的共聚焦光致发光显微镜,并结合光电流检测模块,在实际工作条件下直接观察PSC的MHP薄膜中的载流子动力学。我们的研究结果表明,高效PSC中的GBs起到载流子传输通道的作用,在那里观察到光电流有显著增强。飞秒瞬态吸收和开尔文探针力显微镜测量进一步证实了GBs附近存在内建电场,为电荷分离提供了额外的驱动力,并为载流子沿GBs快速传输建立了通道,从而加速了后续的电荷收集过程。本研究阐明了GBs在工作PSC中的关键作用,并为高效PSC的制造提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8e/12137848/cb0c7a03e216/40820_2025_1795_Fig1_HTML.jpg

相似文献

1
Grain Boundaries Contribute to the Performance of Perovskite Solar Cells by Promoting Charge Separations.
Nanomicro Lett. 2025 Jun 4;17(1):285. doi: 10.1007/s40820-025-01795-0.
8
Curtailing Non-Radiative Recombination and Tailoring Interfacial Energetics via Bimolecular Passivation toward Efficient Inverted Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2025 Jul 16;17(28):40467-40475. doi: 10.1021/acsami.5c07089. Epub 2025 Jul 3.
9
Impact of Argon, Nitrogen, and Oxygen Exposure on the Structural and Optoelectrical Properties of Mixed Tin-Lead Halide Perovskites.
ACS Omega. 2025 Jun 13;10(24):25538-25545. doi: 10.1021/acsomega.5c00956. eCollection 2025 Jun 24.
10
Organic Interlayer for Enhanced Buried Interfaces in Wide-Bandgap Perovskite Solar Cells.
ChemSusChem. 2025 Aug 6;18(16):e202500543. doi: 10.1002/cssc.202500543. Epub 2025 Jul 8.

本文引用的文献

1
Elucidating the Impact of Electron Accumulation in Quantum-Dot Light-Emitting Diodes.
Nano Lett. 2024 Oct 23;24(42):13374-13380. doi: 10.1021/acs.nanolett.4c03967. Epub 2024 Oct 10.
2
Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells.
Science. 2024 Aug 2;385(6708):554-560. doi: 10.1126/science.ado9104. Epub 2024 Aug 1.
3
Multi-heterojunctioned plastics with high thermoelectric figure of merit.
Nature. 2024 Aug;632(8025):528-535. doi: 10.1038/s41586-024-07724-2. Epub 2024 Jul 24.
5
Flexible power generators by AgSe thin films with record-high thermoelectric performance.
Nat Commun. 2024 Jan 31;15(1):923. doi: 10.1038/s41467-024-45092-7.
6
Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells.
Nature. 2023 Nov;623(7988):732-738. doi: 10.1038/s41586-023-06667-4. Epub 2023 Sep 28.
7
A Practical Approach Toward Highly Reproducible and High-Quality Perovskite Films Based on an Aging Treatment.
Adv Mater. 2024 Jan;36(1):e2307024. doi: 10.1002/adma.202307024. Epub 2023 Nov 23.
9
Advances in the Application of Perovskite Materials.
Nanomicro Lett. 2023 Jul 10;15(1):177. doi: 10.1007/s40820-023-01140-3.
10
A Review on Interface Engineering of MXenes for Perovskite Solar Cells.
Nanomicro Lett. 2023 May 9;15(1):123. doi: 10.1007/s40820-023-01083-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验