Turnley Jonathan W, Agrawal Rakesh
Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
Chem Commun (Camb). 2024 May 14;60(40):5245-5269. doi: 10.1039/d4cc01057d.
Thin film photovoltaics are a key part of both current and future solar energy technologies and have been heavily reliant on metal chalcogenide semiconductors as the absorber layer. Developing solution processing methods to deposit metal chalcogenide semiconductors offers the promise of low-cost and high-throughput fabrication of thin film photovoltaics. In this review article we lay out the key chemistry and engineering that has propelled research on solution processing of metal chalcogenide semiconductors, focusing on Cu(In,Ga)(S,Se) as a model system. Further, we expand on how this methodology can be extended to other emerging metal chalcogenide materials like CuZnSn(S,Se), copper pnictogen sulfides, and chalcogenide perovskites. Finally, we discuss future opportunities in this field of research, both considering fundamental and applied perspectives. Overall, this review can serve as a roadmap to researchers tackling challenges in solution processed metal chalcogenides to better accelerate progress on thin films photovoltaics and other semiconductor applications.
薄膜光伏是当前和未来太阳能技术的关键组成部分,并且严重依赖金属硫族化物半导体作为吸收层。开发用于沉积金属硫族化物半导体的溶液处理方法有望实现低成本、高通量的薄膜光伏制造。在这篇综述文章中,我们阐述了推动金属硫族化物半导体溶液处理研究的关键化学和工程学知识,重点以Cu(In,Ga)(S,Se)作为模型体系。此外,我们还进一步探讨了如何将这种方法扩展到其他新兴的金属硫族化物材料,如CuZnSn(S,Se)、铜磷硫化物和硫族钙钛矿。最后,我们从基础和应用的角度讨论了该研究领域未来的机遇。总体而言,这篇综述可为研究人员应对溶液处理金属硫族化物中的挑战提供路线图,以更好地加速薄膜光伏及其他半导体应用的进展。