Suppr超能文献

用于地下水DNAPL源特征描述的双向机器学习辅助基于灵敏度的随机搜索方法

Bidirectional machine learning-assisted sensitivity-based stochastic searching approach for groundwater DNAPL source characterization.

作者信息

Hou Zeyu, Lin Yingzi, Liu Tongzhe, Lu Wenxi

机构信息

Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.

School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China.

出版信息

Environ Sci Pollut Res Int. 2024 May;31(23):33591-33609. doi: 10.1007/s11356-024-33405-8. Epub 2024 Apr 29.

Abstract

In this study, we designed a machine learning-based parallel global searching method using the Bayesian inversion framework for efficient identification of dense non-aqueous phase liquid (DNAPL) source characteristics and contaminant transport parameters in groundwater. Swarm intelligence organized hybrid-kernel extreme learning machine (SIO-HKELM) was proposed to approximate the forward and inverse input-output correlation with a high accuracy using the DNAPL transport numerical simulation model. An adaptive inverse-HKELM was established for preliminary estimation of the source characteristics and contaminant transport parameters to correct prior information and generate high-quality initial starting points of parallel searching. A local accurate forward-HKELM surrogate of the numerical model was embedded in the searching system for avoiding repetitive CPU-demanding likelihood evaluations. A sensitivity-based Metropolis criterion (MC), incorporating the dynamic particle swarm optimization (SD-PSO) algorithm, was developed for improving the search ergodicity and realizing precise inversion of all the unknown variables with drastic variations in sensitivity to the likelihood function. Results showed that the generalization capability and robustness of SIO-HKELM were superior to those of the traditional machine learning methods, including KELM and support vector regression (SVR), and it sufficiently approximated the forward and inverse input-output mapping of the numerical model with testing determination coefficients of 0.9944 and 0.6440, respectively. With high-quality prior information and initial starting points generated by the adaptive inverse-HKELM feed approach, the uncertainty in the inversion outputs was reduced, and the searching process rapidly converged to reasonable posterior distributions in around 60 iterations. Compared with the widely used multichain Markov chain Monte Carlo (MCMC) approach, the parallel searching lines generated by SD-PSO-MC adequately covered the searching space, and the "equifinality" effect was more effectively restrained by reducing the relative errors of all the point estimations to less than 8%. Therefore, the real source information reflected by the statistical characteristics of the SD-PSO-MC inversion outputs was more precise than that obtained using the multichain MCMC approach.

摘要

在本研究中,我们设计了一种基于机器学习的并行全局搜索方法,该方法使用贝叶斯反演框架,以有效识别地下水中的致密非水相液体(DNAPL)源特征和污染物迁移参数。提出了群体智能组织的混合核极限学习机(SIO-HKELM),利用DNAPL迁移数值模拟模型高精度地逼近正向和反向输入输出相关性。建立了自适应逆HKELM,用于初步估计源特征和污染物迁移参数,以校正先验信息并生成并行搜索的高质量初始起点。数值模型的局部精确正向HKELM代理被嵌入到搜索系统中,以避免重复进行耗费CPU的似然性评估。开发了一种基于灵敏度的Metropolis准则(MC),结合动态粒子群优化(SD-PSO)算法,以提高搜索遍历性,并实现对所有未知变量的精确反演,这些变量对似然函数的灵敏度有剧烈变化。结果表明,SIO-HKELM的泛化能力和鲁棒性优于传统机器学习方法,包括核极限学习机(KELM)和支持向量回归(SVR),并且它分别以0.9944和0.6440的测试决定系数充分逼近了数值模型的正向和反向输入输出映射。通过自适应逆HKELM馈送方法生成的高质量先验信息和初始起点,反演输出的不确定性降低,搜索过程在大约60次迭代中迅速收敛到合理的后验分布。与广泛使用的多链马尔可夫链蒙特卡罗(MCMC)方法相比,SD-PSO-MC生成的并行搜索线充分覆盖了搜索空间,并且通过将所有点估计的相对误差降低到8%以下,更有效地抑制了“等效性”效应。因此,SD-PSO-MC反演输出的统计特征所反映的真实源信息比使用多链MCMC方法获得的信息更精确。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验