Suppr超能文献

基于改进差分进化-马尔可夫链算法的地下水污染源识别

Groundwater contamination source identification using improved differential evolution Markov chain algorithm.

机构信息

Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.

Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China.

出版信息

Environ Sci Pollut Res Int. 2022 Mar;29(13):19679-19692. doi: 10.1007/s11356-021-17120-2. Epub 2021 Oct 31.

Abstract

The groundwater contamination source identification (GCSI) can provide important bases for the design of pollution remediation plans. The Bayesian theory is commonly used in the GCSI problem. Usually, we use the Markov chain Monte Carlo (MCMC) method to realize the Bayesian framework. However, due to the ill-posed nature of the GCSI and the system model's complexity, the conventional MCMC algorithm is time-consuming and has low accuracy. In this study, we proposed an adaptive mutation differential evolution Markov chain (AM-DEMC) algorithm. In this algorithm, the Kent mapping chaotic sequence method, combined with differential evolution (DE) algorithm, was used to generate the initial population. In the iteration process, we introduced a hybrid mutation strategy to generate the candidate vectors. Moreover, we adaptively adjust the essential parameter F of the AM-DEMC algorithm according to the individual fitness value. For further improving the efficiency of solving the GCSI problem, the Kriging method was used to establish a surrogate model to avoid the enormous computational load associated with the numerical simulation model. Finally, a hypothetical groundwater contamination case was given to verify the effectiveness of the AM-DEMC algorithm. The results indicated that the proposed AM-DEMC algorithm successfully identified the contamination sources' characteristics and simulation model's parameters. It also exhibited stronger search-ability and higher accuracy than the MCMC and DE-MC algorithms.

摘要

地下水污染溯源(GCSI)可为污染修复方案设计提供重要依据。贝叶斯理论常用于 GCSI 问题。通常,我们使用马尔可夫链蒙特卡罗(MCMC)方法来实现贝叶斯框架。然而,由于 GCSI 的不适定性和系统模型的复杂性,传统的 MCMC 算法耗时且精度较低。在本研究中,我们提出了一种自适应变异差分进化马尔可夫链(AM-DEMC)算法。在该算法中,采用 Kent 映射混沌序列方法与差分进化(DE)算法相结合生成初始种群。在迭代过程中,我们引入了混合变异策略来生成候选向量。此外,我们根据个体适应度值自适应调整 AM-DEMC 算法的关键参数 F。为进一步提高解决 GCSI 问题的效率,采用克里金方法建立代理模型以避免与数值模拟模型相关的巨大计算负荷。最后,给出了一个假设的地下水污染案例来验证 AM-DEMC 算法的有效性。结果表明,所提出的 AM-DEMC 算法成功识别了污染源特征和模拟模型参数。与 MCMC 和 DE-MC 算法相比,它还表现出更强的搜索能力和更高的精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验