Suppr超能文献

量子点中自旋轨道耦合诱导的可控量子疤痕

Controllable quantum scars induced by spin-orbit couplings in quantum dots.

作者信息

Zhang Lin, Hu Yutao, Yao Zhao, Liu Xiaochi, Luo Wenchen, Sun Kehui, Chakraborty Tapash

机构信息

School of Physics, Central South University, Changsha, 410083, China.

Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada.

出版信息

Discov Nano. 2024 Apr 29;19(1):72. doi: 10.1186/s11671-024-04015-7.

Abstract

Spin-orbit couplings (SOCs), originating from the relativistic corrections in the Dirac equation, offer nonlinearity in the classical limit and are capable of driving chaotic dynamics. In a nanoscale quantum dot confined by a two-dimensional parabolic potential with SOCs, various quantum scar states emerge quasi-periodically in the eigenstates of the system, when the ratio of confinement energies in the two directions is nearly commensurable. The scars, displaying both quantum interference and classical trajectory features on the electron density, due to relativistic effects, serve as a bridge between the classical and quantum behaviors of the system. When the strengths of Rashba and Dresselhaus SOCs are identical, the chaos in the classical limit is eliminated as the classical Hamilton's equations become linear, leading to the disappearance of all quantum scar states. Importantly, the quantum scars induced by SOCs are robust against small perturbations of system parameters. With precise control achievable through external gating, the quantum scar induced by Rashba SOC is fully controllable and detectable.

摘要

自旋轨道耦合(SOCs)源于狄拉克方程中的相对论修正,在经典极限下提供非线性,并能够驱动混沌动力学。在由具有自旋轨道耦合的二维抛物线势限制的纳米级量子点中,当两个方向上的限制能量之比几乎可公度时,各种量子疤痕态在系统的本征态中准周期性地出现。由于相对论效应,这些疤痕在电子密度上同时显示出量子干涉和经典轨迹特征,它们作为系统经典行为和量子行为之间的桥梁。当拉什巴和德雷塞尔豪斯自旋轨道耦合的强度相同时,经典极限下的混沌被消除,因为经典哈密顿方程变为线性,导致所有量子疤痕态消失。重要的是,由自旋轨道耦合诱导的量子疤痕对系统参数的小扰动具有鲁棒性。通过外部门控可实现精确控制,由拉什巴自旋轨道耦合诱导的量子疤痕是完全可控且可检测的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8d8/11058183/be3f6718f929/11671_2024_4015_Fig1_HTML.jpg

相似文献

1
Controllable quantum scars induced by spin-orbit couplings in quantum dots.
Discov Nano. 2024 Apr 29;19(1):72. doi: 10.1186/s11671-024-04015-7.
2
Spin-Resolved Quantum Scars in Confined Spin-Coupled Two-Dimensional Electron Gas.
Nanomaterials (Basel). 2021 May 11;11(5):1258. doi: 10.3390/nano11051258.
4
Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera.
Phys Rev Lett. 2018 Mar 23;120(12):124101. doi: 10.1103/PhysRevLett.120.124101.
6
Unique Spin Vortices and Topological Charges in Quantum Dots with Spin-orbit Couplings.
Sci Rep. 2019 Jan 24;9(1):672. doi: 10.1038/s41598-018-35837-y.
7
Calculations of spin-polarized Goos-Hänchen displacement in magnetically confined GaAs/Al Ga As nanostructure modulated by spin-orbit couplings.
J Phys Condens Matter. 2018 Apr 11;30(14):145302. doi: 10.1088/1361-648X/aab0b2. Epub 2018 Feb 20.
8
Chiral scars in chaotic Dirac fermion systems.
Phys Rev Lett. 2013 Feb 8;110(6):064102. doi: 10.1103/PhysRevLett.110.064102. Epub 2013 Feb 5.
9
Conductance fluctuations in chaotic bilayer graphene quantum dots.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012918. doi: 10.1103/PhysRevE.92.012918. Epub 2015 Jul 27.
10
Transparent qubit manipulations with spin-orbit coupled two-electron nanowire quantum dot.
Sci Rep. 2021 Sep 22;11(1):18839. doi: 10.1038/s41598-021-98152-z.

本文引用的文献

1
Imaging Quantum Interference in Stadium-Shaped Monolayer and Bilayer Graphene Quantum Dots.
Nano Lett. 2021 Nov 10;21(21):8993-8998. doi: 10.1021/acs.nanolett.1c02271. Epub 2021 Oct 26.
2
Spin-Resolved Quantum Scars in Confined Spin-Coupled Two-Dimensional Electron Gas.
Nanomaterials (Basel). 2021 May 11;11(5):1258. doi: 10.3390/nano11051258.
3
Quantum Lissajous Scars.
Phys Rev Lett. 2019 Nov 22;123(21):214101. doi: 10.1103/PhysRevLett.123.214101.
4
Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields.
Phys Rev Lett. 2019 May 24;122(20):207701. doi: 10.1103/PhysRevLett.122.207701.
5
Quantum Dot Formation in Controllably Doped Graphene Nanoribbon.
ACS Nano. 2019 Jul 23;13(7):7502-7507. doi: 10.1021/acsnano.9b02935. Epub 2019 Jun 4.
6
Periodic Orbits, Entanglement, and Quantum Many-Body Scars in Constrained Models: Matrix Product State Approach.
Phys Rev Lett. 2019 Feb 1;122(4):040603. doi: 10.1103/PhysRevLett.122.040603.
7
Unique Spin Vortices and Topological Charges in Quantum Dots with Spin-orbit Couplings.
Sci Rep. 2019 Jan 24;9(1):672. doi: 10.1038/s41598-018-35837-y.
8
Visualization and Control of Single-Electron Charging in Bilayer Graphene Quantum Dots.
Nano Lett. 2018 Aug 8;18(8):5104-5110. doi: 10.1021/acs.nanolett.8b01972. Epub 2018 Jul 30.
9
Relativistic quantum chaos-An emergent interdisciplinary field.
Chaos. 2018 May;28(5):052101. doi: 10.1063/1.5026904.
10
Large tunable valley splitting in edge-free graphene quantum dots on boron nitride.
Nat Nanotechnol. 2018 May;13(5):392-397. doi: 10.1038/s41565-018-0080-8. Epub 2018 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验