Suppr超能文献

胞外电子摄取机制对电甲烷生成应用的相关性。

Relevance of extracellular electron uptake mechanisms for electromethanogenesis applications.

机构信息

Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8200 Aarhus, Denmark.

Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8200 Aarhus, Denmark.

出版信息

Biotechnol Adv. 2024 Jul-Aug;73:108369. doi: 10.1016/j.biotechadv.2024.108369. Epub 2024 Apr 27.

Abstract

Electromethanogenesis has emerged as a biological branch of Power-to-X technologies that implements methanogenic microorganisms, as an alternative to chemical Power-to-X, to convert electrical power from renewable sources, and CO into methane. Unlike biomethanation processes where CO is converted via exogenously added hydrogen, electromethanogenesis occurs in a bioelectrochemical set-up that combines electrodes and microorganisms. Thereby, mixed, or pure methanogenic cultures catalyze the reduction of CO to methane via reducing equivalents supplied by a cathode. Recent advances in electromethanogenesis have been driven by interdisciplinary research at the intersection of microbiology, electrochemistry, and engineering. Integrating the knowledge acquired from these areas is essential to address the specific challenges presented by this relatively young biotechnology, which include electron transfer limitations, low energy and product efficiencies, and reactor design to enable upscaling. This review approaches electromethanogenesis from a multidisciplinary perspective, putting emphasis on the extracellular electron uptake mechanisms that methanogens use to obtain energy from cathodes, since understanding these mechanisms is key to optimize the electrochemical conditions for the development of these systems. This work summarizes the direct and indirect extracellular electron uptake mechanisms that have been elucidated to date in methanogens, along with the ones that remain unsolved. As the study of microbial corrosion, a similar bioelectrochemical process with Fe as electron source, has contributed to elucidate different mechanisms on how methanogens use solid electron donors, insights from both fields, biocorrosion and electromethanogenesis, are combined. Based on the repertoire of mechanisms and their potential to convert CO to methane, we conclude that for future applications, electromethanogenesis should focus on the indirect mechanism with H as intermediary. By summarizing and linking the general aspects and challenges of this process, we hope that this review serves as a guide for researchers working on electromethanogenesis in different areas of expertise to overcome the current limitations and continue with the optimization of this promising interdisciplinary technology.

摘要

电甲烷生成已成为 Power-to-X 技术的一个生物分支,它采用产甲烷微生物作为化学 Power-to-X 的替代方法,将来自可再生能源的电力和 CO 转化为甲烷。与通过外加氢气将 CO 转化的生物甲烷化过程不同,电甲烷生成是在生物电化学装置中进行的,该装置结合了电极和微生物。在这种装置中,混合或纯产甲烷培养物通过阴极提供的还原当量催化 CO 还原为甲烷。电甲烷生成的最新进展是由微生物学、电化学和工程学交叉领域的跨学科研究推动的。整合这些领域获得的知识对于解决这个相对年轻的生物技术所面临的具体挑战至关重要,这些挑战包括电子转移限制、低能量和产物效率以及反应器设计以实现放大。从多学科的角度来看待电甲烷生成,本文重点介绍了产甲烷菌从阴极获取能量的细胞外电子摄取机制,因为了解这些机制是优化电化学条件以开发这些系统的关键。本文总结了迄今为止在产甲烷菌中阐明的直接和间接细胞外电子摄取机制,以及尚未解决的机制。由于微生物腐蚀的研究,这是一种类似的生物电化学过程,以 Fe 作为电子源,它为阐明产甲烷菌如何利用固体电子供体的不同机制做出了贡献,生物腐蚀和电甲烷生成这两个领域的知识被结合在一起。基于机制的组合及其将 CO 转化为甲烷的潜力,我们得出结论,对于未来的应用,电甲烷生成应侧重于以 H 为中间体的间接机制。通过总结和联系这个过程的一般方面和挑战,我们希望这篇综述可以为在不同专业领域从事电甲烷生成研究的研究人员提供指导,以克服当前的限制,并继续优化这项有前途的跨学科技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验