Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Pushchino, Russia.
Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Pushchino, Russia.
Neurobiol Learn Mem. 2024 May;211:107929. doi: 10.1016/j.nlm.2024.107929. Epub 2024 Apr 27.
Hippocampal cross-frequency theta-gamma coupling (TGC) is a basic mechanism for information processing, retrieval, and consolidation of long-term and working memory. While the role of entorhinal afferents in the modulation of hippocampal TGC is widely accepted, the influence of other main input to the hippocampus, from the medial septal area (MSA, the pacemaker of the hippocampal theta rhythm) is poorly understood. Optogenetics allows us to explore how different neuronal populations of septohippocampal circuits control neuronal oscillations in vivo. Rhythmic activation of septal glutamatergic neurons has been shown to drive hippocampal theta oscillations, but the role of these neuronal populations in information processing during theta activation has remained unclear. Here we investigated the influence of phasic activation of MSA glutamatergic neurons expressing channelrhodopsin II on theta-gamma coupling in the hippocampus. During the experiment, local field potentials of MSA and hippocampus of freely behaving mice were modulated by 470 nm light flashes with theta frequency (2-10) Hz. It was shown that both the power and the strength of modulation of gamma rhythm nested on hippocampal theta waves depend on the frequency of stimulation. The modulation of the amplitude of slow gamma rhythm (30-50 Hz) prevailed over modulation of fast gamma (55-100 Hz) during flash trains and the observed effects were specific for theta stimulation of MSA. We discuss the possibility that phasic depolarization of septal glutamatergic neurons controls theta-gamma coupling in the hippocampus and plays a role in memory retrieval and consolidation.
海马跨频θ-γ 耦合(TGC)是信息处理、检索和长期及工作记忆巩固的基本机制。虽然内嗅传入纤维在调节海马 TGC 中的作用已被广泛接受,但对来自中隔区(MSA,海马θ节律的起搏器)的海马主要输入的影响知之甚少。光遗传学使我们能够探索隔海马回路的不同神经元群体如何在体内控制神经元振荡。已经表明,隔区谷氨酸能神经元的节律性激活会驱动海马θ振荡,但这些神经元群体在θ激活期间信息处理中的作用仍不清楚。在这里,我们研究了表达通道视紫红质 II 的 MSA 谷氨酸能神经元的相位激活对海马 TGC 的影响。在实验过程中,通过 470nm 光闪烁以θ频率(2-10Hz)调制自由行为小鼠的 MSA 和海马的局部场电位。结果表明,嵌套在海马θ波上的γ节律的功率和调制强度都取决于刺激频率。在闪光列车期间,慢γ节律(30-50Hz)的幅度调制占主导地位,而快γ(55-100Hz)的调制占主导地位,并且观察到的效应是 MSA 的θ刺激特异性的。我们讨论了隔区谷氨酸能神经元的相位去极化控制海马 TGC 的可能性,并在记忆检索和巩固中发挥作用。