Arnold Anton, Toshpulatov Gayrat
Institute for Analysis and Scientific Computing, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.
J Stat Phys. 2024;191(5):51. doi: 10.1007/s10955-024-03263-2. Epub 2024 Apr 27.
This paper is concerned with a modified entropy method to establish the large-time convergence towards the (unique) steady state, for kinetic Fokker-Planck equations with non-quadratic confinement potentials in whole space. We extend previous approaches by analyzing Lyapunov functionals with non-constant weight matrices in the dissipation functional (a generalized Fisher information). We establish exponential convergence in a weighted -norm with rates that become sharp in the case of quadratic potentials. In the defective case for quadratic potentials, i.e. when the drift matrix has non-trivial Jordan blocks, the weighted -distance between a Fokker-Planck-solution and the steady state has always a sharp decay estimate of the order , with the friction parameter. The presented method also gives new hypoelliptic regularization results for kinetic Fokker-Planck equations (from a weighted -space to a weighted -space).
本文关注一种修正的熵方法,用于建立在全空间中具有非二次约束势的动力学福克 - 普朗克方程向(唯一)稳态的大时间收敛性。我们通过分析耗散泛函(广义费希尔信息)中具有非恒定权重矩阵的李雅普诺夫泛函来扩展先前的方法。我们在加权(L^2)范数中建立指数收敛,其速率在二次势的情况下变得精确。在二次势的缺陷情况下,即当漂移矩阵具有非平凡约旦块时,福克 - 普朗克解与稳态之间的加权(L^2)距离始终具有(O(e^{-\gamma t}))的精确衰减估计,其中(\gamma)为摩擦参数。所提出的方法还给出了动力学福克 - 普朗克方程的新的亚椭圆正则化结果(从加权(L^2)空间到加权(L^1)空间)。