Suppr超能文献

用于咽鼓管和颈内动脉分析的深度学习框架。

A Deep Learning Framework for Analysis of the Eustachian Tube and the Internal Carotid Artery.

机构信息

Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.

Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

Otolaryngol Head Neck Surg. 2024 Sep;171(3):731-739. doi: 10.1002/ohn.789. Epub 2024 Apr 30.

Abstract

OBJECTIVE

Obtaining automated, objective 3-dimensional (3D) models of the Eustachian tube (ET) and the internal carotid artery (ICA) from computed tomography (CT) scans could provide useful navigational and diagnostic information for ET pathologies and interventions. We aim to develop a deep learning (DL) pipeline to automatically segment the ET and ICA and use these segmentations to compute distances between these structures.

STUDY DESIGN

Retrospective cohort.

SETTING

Tertiary referral center.

METHODS

From a database of 30 CT scans, 60 ET and ICA pairs were manually segmented and used to train an nnU-Net model, a DL segmentation framework. These segmentations were also used to develop a quantitative tool to capture the magnitude and location of the minimum distance point (MDP) between ET and ICA. Performance metrics for the nnU-Net automated segmentations were calculated via the average Hausdorff distance (AHD) and dice similarity coefficient (DSC).

RESULTS

The AHD for the ET and ICA were 0.922 and 0.246 mm, respectively. Similarly, the DSC values for the ET and ICA were 0.578 and 0.884. The mean MDP from ET to ICA in the cartilaginous region was 2.6 mm (0.7-5.3 mm) and was located on average 1.9 mm caudal from the bony cartilaginous junction.

CONCLUSION

This study describes the first end-to-end DL pipeline for automated ET and ICA segmentation and analyzes distances between these structures. In addition to helping to ensure the safe selection of patients for ET dilation, this method can facilitate large-scale studies exploring the relationship between ET pathologies and the 3D shape of the ET.

摘要

目的

从计算机断层扫描(CT)扫描中获取咽鼓管(ET)和颈内动脉(ICA)的自动、客观的三维(3D)模型,可以为 ET 病变和干预提供有用的导航和诊断信息。我们旨在开发一种深度学习(DL)管道,自动分割 ET 和 ICA,并使用这些分割来计算这些结构之间的距离。

研究设计

回顾性队列研究。

设置

三级转诊中心。

方法

从 30 例 CT 扫描的数据库中,手动分割了 60 对 ET 和 ICA,并用于训练 nnU-Net 模型,这是一种 DL 分割框架。这些分割还用于开发一种定量工具,以捕捉 ET 和 ICA 之间最小距离点(MDP)的大小和位置。通过平均 Hausdorff 距离(AHD)和骰子相似系数(DSC)计算 nnU-Net 自动分割的性能指标。

结果

ET 和 ICA 的 AHD 分别为 0.922 和 0.246mm。同样,ET 和 ICA 的 DSC 值分别为 0.578 和 0.884。ET 到 ICA 的软骨区的平均 MDP 为 2.6mm(0.7-5.3mm),平均位于骨性软骨交界处后 1.9mm 处。

结论

本研究描述了第一个用于自动 ET 和 ICA 分割的端到端 DL 管道,并分析了这些结构之间的距离。除了有助于确保安全选择 ET 扩张的患者外,这种方法还可以促进大规模研究,探索 ET 病变与 ET 3D 形状之间的关系。

相似文献

1
A Deep Learning Framework for Analysis of the Eustachian Tube and the Internal Carotid Artery.
Otolaryngol Head Neck Surg. 2024 Sep;171(3):731-739. doi: 10.1002/ohn.789. Epub 2024 Apr 30.
3
Critical distance between the cartilaginous Eustachian tube and the internal carotid artery.
Eur Arch Otorhinolaryngol. 2017 Jan;274(1):73-77. doi: 10.1007/s00405-016-4187-y. Epub 2016 Jul 8.
5
Eustachian tube and internal carotid artery in skull base surgery: an anatomical study.
Laryngoscope. 2014 Dec;124(12):2655-64. doi: 10.1002/lary.24808. Epub 2014 Oct 7.
6
Expanding the endoscopic transpterygoid corridor to the petroclival region: anatomical study and volumetric comparative analysis.
J Neurosurg. 2018 Jun;128(6):1855-1864. doi: 10.3171/2017.1.JNS161788. Epub 2017 Jul 21.
8
Developmental Anatomy of the Eustachian Tube: Implications for Balloon Dilation.
Otolaryngol Head Neck Surg. 2021 Dec;165(6):862-867. doi: 10.1177/0194599821994817. Epub 2021 Feb 23.
9
Cartilaginous Eustachian tube length and carotid canal dehiscence in children: a radiological study.
Eur Arch Otorhinolaryngol. 2018 Nov;275(11):2675-2682. doi: 10.1007/s00405-018-5128-8. Epub 2018 Sep 18.
10
The anatomical relationship between the eustachian tube and petrous internal carotid artery.
Laryngoscope. 2012 Dec;122(12):2658-62. doi: 10.1002/lary.23679. Epub 2012 Nov 14.

本文引用的文献

1
Assessing Inter-Annotator Agreement for Medical Image Segmentation.
IEEE Access. 2023;11:21300-21312. doi: 10.1109/access.2023.3249759. Epub 2023 Feb 27.
2
Measurements of The Pediatric Cartilaginous Eustachian Tube: Implications for Balloon Dilation.
Laryngoscope. 2023 Feb;133(2):396-402. doi: 10.1002/lary.30113. Epub 2022 Mar 26.
3
Automated Registration-Based Temporal Bone Computed Tomography Segmentation for Applications in Neurotologic Surgery.
Otolaryngol Head Neck Surg. 2022 Jul;167(1):133-140. doi: 10.1177/01945998211044982. Epub 2021 Sep 7.
5
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.
Nat Methods. 2021 Feb;18(2):203-211. doi: 10.1038/s41592-020-01008-z. Epub 2020 Dec 7.
6
Radiomics feature reproducibility under inter-rater variability in segmentations of CT images.
Sci Rep. 2020 Jul 29;10(1):12688. doi: 10.1038/s41598-020-69534-6.
7
Eustachian Tube Balloon Dilation: A Systematic Review and Meta-analysis of Treatment Outcomes.
Otolaryngol Head Neck Surg. 2020 Nov;163(5):870-882. doi: 10.1177/0194599820924322. Epub 2020 Jun 2.
8
Navigation-Assisted Balloon Eustachian Tuboplasty for Eustachian Tube Dilatory Dysfunction.
Clin Exp Otorhinolaryngol. 2020 Nov;13(4):389-395. doi: 10.21053/ceo.2019.01305. Epub 2020 May 12.
9
Indications for Eustachian tube dilation.
Curr Opin Otolaryngol Head Neck Surg. 2020 Feb;28(1):31-35. doi: 10.1097/MOO.0000000000000601.
10
Prevalence of Eustachian Tube Dysfunction in Adults in the United States.
JAMA Otolaryngol Head Neck Surg. 2019 Oct 1;145(10):974-975. doi: 10.1001/jamaoto.2019.1917.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验