Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
Otolaryngol Head Neck Surg. 2022 Jul;167(1):133-140. doi: 10.1177/01945998211044982. Epub 2021 Sep 7.
This study investigates the accuracy of an automated method to rapidly segment relevant temporal bone anatomy from cone beam computed tomography (CT) images. Implementation of this segmentation pipeline has potential to improve surgical safety and decrease operative time by augmenting preoperative planning and interfacing with image-guided robotic surgical systems.
Descriptive study of predicted segmentations.
Academic institution.
We have developed a computational pipeline based on the symmetric normalization registration method that predicts segmentations of anatomic structures in temporal bone CT scans using a labeled atlas. To evaluate accuracy, we created a data set by manually labeling relevant anatomic structures (eg, ossicles, labyrinth, facial nerve, external auditory canal, dura) for 16 deidentified high-resolution cone beam temporal bone CT images. Automated segmentations from this pipeline were compared against ground-truth manual segmentations by using modified Hausdorff distances and Dice scores. Runtimes were documented to determine the computational requirements of this method.
Modified Hausdorff distances and Dice scores between predicted and ground-truth labels were as follows: malleus (0.100 ± 0.054 mm; Dice, 0.827 ± 0.068), incus (0.100 ± 0.033 mm; Dice, 0.837 ± 0.068), stapes (0.157 ± 0.048 mm; Dice, 0.358 ± 0.100), labyrinth (0.169 ± 0.100 mm; Dice, 0.838 ± 0.060), and facial nerve (0.522 ± 0.278 mm; Dice, 0.567 ± 0.130). A quad-core 16GB RAM workstation completed this segmentation pipeline in 10 minutes.
We demonstrated submillimeter accuracy for automated segmentation of temporal bone anatomy when compared against hand-segmented ground truth using our template registration pipeline. This method is not dependent on the training data volume that plagues many complex deep learning models. Favorable runtime and low computational requirements underscore this method's translational potential.
本研究旨在探讨一种从锥形束 CT(CBCT)图像中快速分割相关颞骨解剖结构的自动化方法的准确性。该分割流水线的实现有可能通过增强术前规划和与图像引导机器人手术系统接口来提高手术安全性并缩短手术时间。
基于预测分割的描述性研究。
学术机构。
我们已经开发了一种基于对称归一化配准方法的计算流水线,该方法使用标记的图谱来预测颞骨 CT 扫描中解剖结构的分割。为了评估准确性,我们通过手动标记相关解剖结构(例如听小骨、迷路、面神经、外耳道、硬脑膜)为 16 个未识别的高分辨率锥形束颞骨 CT 图像创建了一个数据集。通过使用改进的 Hausdorff 距离和 Dice 分数将来自该流水线的自动分割与地面真实手动分割进行比较。记录运行时间以确定该方法的计算要求。
预测标签与地面真实标签之间的改进的 Hausdorff 距离和 Dice 分数如下:锤骨(0.100±0.054mm;Dice,0.827±0.068)、砧骨(0.100±0.033mm;Dice,0.837±0.068)、镫骨(0.157±0.048mm;Dice,0.358±0.100)、迷路(0.169±0.100mm;Dice,0.838±0.060)和面神经(0.522±0.278mm;Dice,0.567±0.130)。一个四核 16GB RAM 工作站在 10 分钟内完成了这个分割流水线。
当与使用我们的模板配准流水线手动分割的地面真实进行比较时,我们证明了自动分割颞骨解剖结构的亚毫米精度。该方法不受困扰许多复杂深度学习模型的训练数据量的限制。有利的运行时间和低计算要求强调了该方法的转化潜力。