Suppr超能文献

基于自动配准的颞骨计算机断层扫描分割在耳神经外科中的应用。

Automated Registration-Based Temporal Bone Computed Tomography Segmentation for Applications in Neurotologic Surgery.

机构信息

Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

Otolaryngol Head Neck Surg. 2022 Jul;167(1):133-140. doi: 10.1177/01945998211044982. Epub 2021 Sep 7.

Abstract

OBJECTIVE

This study investigates the accuracy of an automated method to rapidly segment relevant temporal bone anatomy from cone beam computed tomography (CT) images. Implementation of this segmentation pipeline has potential to improve surgical safety and decrease operative time by augmenting preoperative planning and interfacing with image-guided robotic surgical systems.

STUDY DESIGN

Descriptive study of predicted segmentations.

SETTING

Academic institution.

METHODS

We have developed a computational pipeline based on the symmetric normalization registration method that predicts segmentations of anatomic structures in temporal bone CT scans using a labeled atlas. To evaluate accuracy, we created a data set by manually labeling relevant anatomic structures (eg, ossicles, labyrinth, facial nerve, external auditory canal, dura) for 16 deidentified high-resolution cone beam temporal bone CT images. Automated segmentations from this pipeline were compared against ground-truth manual segmentations by using modified Hausdorff distances and Dice scores. Runtimes were documented to determine the computational requirements of this method.

RESULTS

Modified Hausdorff distances and Dice scores between predicted and ground-truth labels were as follows: malleus (0.100 ± 0.054 mm; Dice, 0.827 ± 0.068), incus (0.100 ± 0.033 mm; Dice, 0.837 ± 0.068), stapes (0.157 ± 0.048 mm; Dice, 0.358 ± 0.100), labyrinth (0.169 ± 0.100 mm; Dice, 0.838 ± 0.060), and facial nerve (0.522 ± 0.278 mm; Dice, 0.567 ± 0.130). A quad-core 16GB RAM workstation completed this segmentation pipeline in 10 minutes.

CONCLUSIONS

We demonstrated submillimeter accuracy for automated segmentation of temporal bone anatomy when compared against hand-segmented ground truth using our template registration pipeline. This method is not dependent on the training data volume that plagues many complex deep learning models. Favorable runtime and low computational requirements underscore this method's translational potential.

摘要

目的

本研究旨在探讨一种从锥形束 CT(CBCT)图像中快速分割相关颞骨解剖结构的自动化方法的准确性。该分割流水线的实现有可能通过增强术前规划和与图像引导机器人手术系统接口来提高手术安全性并缩短手术时间。

研究设计

基于预测分割的描述性研究。

设置

学术机构。

方法

我们已经开发了一种基于对称归一化配准方法的计算流水线,该方法使用标记的图谱来预测颞骨 CT 扫描中解剖结构的分割。为了评估准确性,我们通过手动标记相关解剖结构(例如听小骨、迷路、面神经、外耳道、硬脑膜)为 16 个未识别的高分辨率锥形束颞骨 CT 图像创建了一个数据集。通过使用改进的 Hausdorff 距离和 Dice 分数将来自该流水线的自动分割与地面真实手动分割进行比较。记录运行时间以确定该方法的计算要求。

结果

预测标签与地面真实标签之间的改进的 Hausdorff 距离和 Dice 分数如下:锤骨(0.100±0.054mm;Dice,0.827±0.068)、砧骨(0.100±0.033mm;Dice,0.837±0.068)、镫骨(0.157±0.048mm;Dice,0.358±0.100)、迷路(0.169±0.100mm;Dice,0.838±0.060)和面神经(0.522±0.278mm;Dice,0.567±0.130)。一个四核 16GB RAM 工作站在 10 分钟内完成了这个分割流水线。

结论

当与使用我们的模板配准流水线手动分割的地面真实进行比较时,我们证明了自动分割颞骨解剖结构的亚毫米精度。该方法不受困扰许多复杂深度学习模型的训练数据量的限制。有利的运行时间和低计算要求强调了该方法的转化潜力。

相似文献

1
Automated Registration-Based Temporal Bone Computed Tomography Segmentation for Applications in Neurotologic Surgery.
Otolaryngol Head Neck Surg. 2022 Jul;167(1):133-140. doi: 10.1177/01945998211044982. Epub 2021 Sep 7.
2
A Self-Configuring Deep Learning Network for Segmentation of Temporal Bone Anatomy in Cone-Beam CT Imaging.
Otolaryngol Head Neck Surg. 2023 Oct;169(4):988-998. doi: 10.1002/ohn.317. Epub 2023 Mar 8.
3
Automated Extraction of Anatomical Measurements From Temporal Bone CT Imaging.
Otolaryngol Head Neck Surg. 2022 Oct;167(4):731-738. doi: 10.1177/01945998221076801. Epub 2022 Feb 8.
4
Atlas-Based Segmentation of Temporal Bone Anatomy.
Int J Comput Assist Radiol Surg. 2017 Nov;12(11):1937-1944. doi: 10.1007/s11548-017-1658-6. Epub 2017 Aug 29.
5
PWD-3DNet: A Deep Learning-Based Fully-Automated Segmentation of Multiple Structures on Temporal Bone CT Scans.
IEEE Trans Image Process. 2021;30:739-753. doi: 10.1109/TIP.2020.3038363. Epub 2020 Dec 4.
6
Fully automated preoperative segmentation of temporal bone structures from clinical CT scans.
Sci Rep. 2021 Jan 8;11(1):116. doi: 10.1038/s41598-020-80619-0.
7
Fully automated segmentation in temporal bone CT with neural network: a preliminary assessment study.
BMC Med Imaging. 2021 Nov 9;21(1):166. doi: 10.1186/s12880-021-00698-x.
8
Multi-atlas segmentation of the facial nerve from clinical CT for virtual reality simulators.
Int J Comput Assist Radiol Surg. 2020 Feb;15(2):259-267. doi: 10.1007/s11548-019-02091-0. Epub 2019 Nov 23.
9
Variability in Manual Segmentation of Temporal Bone Structures in Cone Beam CT Images.
Otol Neurotol. 2024 Mar 1;45(3):e137-e141. doi: 10.1097/MAO.0000000000004119. Epub 2024 Feb 7.
10
Automatic multi-label temporal bone computed tomography segmentation with deep learning.
Int J Med Robot. 2023 Oct;19(5):e2536. doi: 10.1002/rcs.2536. Epub 2023 May 19.

引用本文的文献

2
Exploration of Automated Measurement for Ossicular Chains Based on 3-Dimensional Geometric Information.
Cyborg Bionic Syst. 2025 Jul 2;6:0305. doi: 10.34133/cbsystems.0305. eCollection 2025.
3
Manual and automated facial de-identification techniques for patient imaging with preservation of sinonasal anatomy.
Int J Comput Assist Radiol Surg. 2025 May 29. doi: 10.1007/s11548-025-03421-1.
4
Fusion of Middle Ear Optical Coherence Tomography and Computed Tomography.
JAMA Otolaryngol Head Neck Surg. 2025 May 1;151(5):476-484. doi: 10.1001/jamaoto.2025.0043.
5
A novel therapeutic pathway to the human cochlear nerve.
Sci Rep. 2024 Nov 5;14(1):26795. doi: 10.1038/s41598-024-74661-5.
7
A Deep Learning Framework for Analysis of the Eustachian Tube and the Internal Carotid Artery.
Otolaryngol Head Neck Surg. 2024 Sep;171(3):731-739. doi: 10.1002/ohn.789. Epub 2024 Apr 30.
8
Evaluation of subarcuate canal on CT images in the perspective of clinical basis.
Eur Arch Otorhinolaryngol. 2024 Jul;281(7):3423-3430. doi: 10.1007/s00405-023-08418-7. Epub 2024 Jan 2.
9
Deep Learning Techniques and Imaging in Otorhinolaryngology-A State-of-the-Art Review.
J Clin Med. 2023 Nov 8;12(22):6973. doi: 10.3390/jcm12226973.
10
Microsurgery Robots: Applications, Design, and Development.
Sensors (Basel). 2023 Oct 16;23(20):8503. doi: 10.3390/s23208503.

本文引用的文献

1
Fully automated preoperative segmentation of temporal bone structures from clinical CT scans.
Sci Rep. 2021 Jan 8;11(1):116. doi: 10.1038/s41598-020-80619-0.
2
PWD-3DNet: A Deep Learning-Based Fully-Automated Segmentation of Multiple Structures on Temporal Bone CT Scans.
IEEE Trans Image Process. 2021;30:739-753. doi: 10.1109/TIP.2020.3038363. Epub 2020 Dec 4.
3
A 3D deep supervised densely network for small organs of human temporal bone segmentation in CT images.
Neural Netw. 2020 Apr;124:75-85. doi: 10.1016/j.neunet.2020.01.005. Epub 2020 Jan 15.
4
Image-Guided Mastoidectomy with a Cooperatively Controlled ENT Microsurgery Robot.
Otolaryngol Head Neck Surg. 2019 Nov;161(5):852-855. doi: 10.1177/0194599819861526. Epub 2019 Jul 23.
5
Toward an automatic preoperative pipeline for image-guided temporal bone surgery.
Int J Comput Assist Radiol Surg. 2019 Jun;14(6):967-976. doi: 10.1007/s11548-019-01937-x. Epub 2019 Mar 19.
6
First spine surgery utilizing real-time image-guided robotic assistance.
Comput Assist Surg (Abingdon). 2019 Dec;24(1):13-17. doi: 10.1080/24699322.2018.1542029. Epub 2019 Mar 1.
7
Morphological analysis of sigmoid sinus anatomy: clinical applications to neurotological surgery.
J Otolaryngol Head Neck Surg. 2019 Jan 11;48(1):2. doi: 10.1186/s40463-019-0324-0.
8
Image-Guided Navigation and Robotics in Spine Surgery.
Neurosurgery. 2019 Jun 1;84(6):1179-1189. doi: 10.1093/neuros/nyy630.
9
Automatic segmentation variability estimation with segmentation priors.
Med Image Anal. 2018 Dec;50:54-64. doi: 10.1016/j.media.2018.08.006. Epub 2018 Aug 26.
10
Automatic segmentation and statistical shape modeling of the paranasal sinuses to estimate natural variations.
Proc SPIE Int Soc Opt Eng. 2016 Feb-Mar;9784. doi: 10.1117/12.2217337. Epub 2016 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验