Suppr超能文献

机器学习增强的单基因疾病无创性产前检测。

Machine learning-enhanced noninvasive prenatal testing of monogenic disorders.

机构信息

Identifai-Genetics Ltd., Tel Aviv, Israel.

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

出版信息

Prenat Diagn. 2024 Aug;44(9):1024-1032. doi: 10.1002/pd.6570. Epub 2024 Apr 30.

Abstract

OBJECTIVE

Single-nucleotide variants (SNVs) are of great significance in prenatal diagnosis as they are the leading cause of inherited single-gene disorders (SGDs). Identifying SNVs in a non-invasive prenatal screening (NIPS) scenario is particularly challenging for maternally inherited SNVs. We present an improved method to predict inherited SNVs from maternal or paternal origin in a genome-wide manner.

METHODS

We performed SNV-NIPS based on the combination of fragments of cell free DNA (cfDNA) features, Bayesian inference and a machine-learning (ML) prediction refinement step using random forest (RF) classifiers trained on millions of non-pathogenic variants. We next evaluate the real-world performance of our refined method in a clinical setting by testing our models on 16 families with singleton pregnancies and varying fetal fraction (FF) levels, and validate the results over millions of inherited variants in each fetus.

RESULTS

The average area under the ROC curve (AUC) values are 0.996 over all families for paternally inherited variants, 0.81 for the challenging maternally inherited variants, 0.86 for homozygous biallelic variants and 0.95 for compound heterozygous variants. Discriminative AUCs were achieved even in families with a low FF. We further investigate the performance of our method in correctly predicting SNVs in coding regions of clinically relevant genes and demonstrate significantly improved AUCs in these regions. Finally, we focus on the pathogenic variants in our cohort and show that our method correctly predicts if the fetus is unaffected or affected in all (10/10, 100%) of the families containing a pathogenic SNV.

CONCLUSIONS

Overall, we demonstrate our ability to perform genome-wide NIPS for maternal and homozygous biallelic variants and showcase the utility of our method in a clinical setting.

摘要

目的

单核苷酸变异(SNV)在产前诊断中具有重要意义,因为它们是遗传性单基因疾病(SGD)的主要原因。在非侵入性产前筛查(NIPS)情况下,鉴定母体遗传 SNV 具有挑战性。我们提出了一种改进的方法,可以从全基因组角度预测母体或父体遗传的 SNV。

方法

我们基于游离 DNA(cfDNA)片段特征的组合、贝叶斯推理以及使用基于数百万个非致病性变异的随机森林(RF)分类器进行的机器学习(ML)预测细化步骤来进行 SNV-NIPS。接下来,我们通过在具有单胎妊娠和不同胎儿分数(FF)水平的 16 个家庭中测试我们的模型,在临床环境中评估我们的细化方法的实际性能,并在每个胎儿中验证数百万个遗传变异的结果。

结果

对于父系遗传变异,所有家庭的平均 ROC 曲线下面积(AUC)值为 0.996,对于具有挑战性的母系遗传变异为 0.81,对于纯合双等位基因变异为 0.86,对于复合杂合变异为 0.95。即使在 FF 较低的家庭中,也实现了有区别的 AUC。我们进一步研究了我们的方法在正确预测临床相关基因编码区域中 SNV 的性能,并在这些区域中显示出显著提高的 AUC。最后,我们关注我们队列中的致病性变异,并表明我们的方法在包含致病性 SNV 的所有(10/10,100%)家庭中都能正确预测胎儿是否未受影响或受影响。

结论

总的来说,我们证明了我们能够进行全基因组母体和纯合双等位基因变异的 NIPS,并展示了我们的方法在临床环境中的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验