Bioneer A/S, Hørsholm, Denmark.
Probi AB, Lund, Sweden.
Appl Environ Microbiol. 2019 May 2;85(10). doi: 10.1128/AEM.02954-18. Print 2019 May 15.
Some lactic acid bacteria, especially spp., possess adhesive properties enabling colonization of the human gastrointestinal tract. Two probiotic strains, WCSF1 and 299v, display highly different mannose-specific adhesion, with 299v being superior to WCFS1 based on a yeast agglutination assay. A straightforward correlation between the mannose adhesion capacity and domain composition of the mannose-specific adhesin (Msa) in the two strains has not been demonstrated previously. In this study, we analyzed the promoter regions upstream of the gene encoding a mannose-specific adhesin in these two strains. The promoter region was mapped by primer extension and DNA sequence analysis, and only a single nucleotide change was identified between the two strains. However, Northern blot analysis showed a stronger transcript band in 299v than in WCFS1 correlating with the different adhesion capacities. During the establishment of a high-throughput yeast agglutination assay, we isolated variants of WCFS1 that displayed a very strong mannose-specific adhesion phenotype. The region upstream of the gene in these variants showed an inversion of a 104-bp fragment located between two perfectly inverted repeats present in the untranslated leader region. The inversion disrupts a strong hairpin structure that otherwise most likely would terminate the transcript. In addition, the ribosome binding site upstream of the gene, which is also masked within this hairpin structure, becomes accessible upon inversion, thereby increasing the frequency of translation initiation in the variant strains. Furthermore, Northern blot analysis showed a higher abundance of the transcript in the variants than in the wild type, correlating with a strong-Msa phenotype. Probiotic strains possess adhesive properties enabling colonization of the human intestinal tract through interactions between molecules present on the probiotic bacteria and components of the epithelial surface. In , interaction is mediated through bacterial surface proteins like Msa, which binds to mannose residues present on the intestinal cells. Such interactions are believed to be important for the health-promoting effects of probiotics, including displacement of pathogens, immunomodulation, and protective effects on the intestinal barrier function. In this study, we have identified a new molecular switch controlling expression of the gene in strain WCFS1. Strains with increased expression could be valuable in the development and manufacture of improved probiotic products.
一些乳酸菌,特别是 spp.,具有黏附特性,能够定植于人类胃肠道。两种益生菌菌株,WCSF1 和 299v,表现出高度不同的甘露糖特异性黏附性,基于酵母凝集试验,299v 优于 WCSF1。先前尚未证明这两种菌株的甘露糖黏附能力与甘露糖特异性黏附素(Msa)的结构域组成之间存在直接相关性。在这项研究中,我们分析了这两种菌株中编码甘露糖特异性黏附素的 基因上游启动子区域。通过引物延伸和 DNA 序列分析对启动子区域进行了作图,仅在两个菌株之间发现了一个核苷酸的变化。然而,Northern blot 分析显示 299v 中的 转录物带比 WCSF1 更强,与不同的黏附能力相关。在建立高通量酵母凝集试验的过程中,我们分离出了 WCSF1 的变体,这些变体表现出非常强的甘露糖特异性黏附表型。这些变体中 基因上游的区域显示出位于未翻译的前导区中两个完全反向重复之间的 104 个碱基对片段的倒位。这种倒位破坏了一个很强的发夹结构,否则该结构很可能会终止 转录物。此外,基因上游的核糖体结合位点也被这个发夹结构掩盖,在倒位后变得可接近,从而增加了变体菌株中转录起始的频率。此外,Northern blot 分析显示变体中的 转录物丰度高于野生型,与强 Msa 表型相关。益生菌菌株具有黏附特性,通过益生菌细菌表面的分子与上皮表面的成分之间的相互作用,定植于人类肠道。在 中,相互作用是通过细菌表面蛋白(如 Msa)介导的,Msa 与肠道细胞上的甘露糖残基结合。这种相互作用被认为对益生菌的健康促进作用很重要,包括对病原体的置换、免疫调节和对肠道屏障功能的保护作用。在这项研究中,我们已经确定了一个新的分子开关,控制 基因在 菌株 WCFS1 中的表达。具有增加的 表达的菌株可能对开发和制造改良的益生菌产品具有价值。