Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA.
Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA.
Trends Endocrinol Metab. 2024 Oct;35(10):918-928. doi: 10.1016/j.tem.2024.04.005. Epub 2024 Apr 29.
Skeletal muscle has a major impact on total body metabolism and obesity, and is characterized by dynamic regulation of substrate utilization. While it is accepted that acute increases in mitochondrial matrix Ca increase carbohydrate usage to augment ATP production, recent studies in mice with deleted genes for components of the mitochondrial Ca uniporter (MCU) complex have suggested a more complicated regulatory scenario. Indeed, mice with a deleted Mcu gene in muscle, which lack acute mitochondrial Ca uptake, have greater fatty acid oxidation (FAO) and less adiposity. By contrast, mice deleted for the inhibitory Mcub gene in skeletal muscle, which have greater acute mitochondrial Ca uptake, antithetically display reduced FAO and progressive obesity. In this review we discuss the emerging concept that dynamic fluxing of mitochondrial matrix Ca regulates metabolism.
骨骼肌对全身代谢和肥胖有重大影响,其特征是底物利用的动态调节。虽然人们普遍认为线粒体基质 Ca 的急性增加会增加碳水化合物的利用,以增加 ATP 的产生,但最近对缺失线粒体 Ca 单向转运体 (MCU) 复合物成分的基因的小鼠的研究表明,存在更复杂的调节情况。事实上,肌肉中缺失 Mcu 基因的小鼠缺乏急性线粒体 Ca 摄取,其脂肪酸氧化 (FAO) 增加,肥胖减少。相比之下,骨骼肌中抑制性 Mcub 基因缺失的小鼠,其急性线粒体 Ca 摄取增加,反而表现出 FAO 减少和进行性肥胖。在这篇综述中,我们讨论了一个新出现的概念,即线粒体基质 Ca 的动态流动调节代谢。