Askari Mohammad Bagher, Salarizadeh Parisa, Ramezan Zadeh Mohammad Hassan
Department of Semiconductor, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
High-Temperature Fuel Cell Research Department, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
Sci Rep. 2024 Apr 30;14(1):9907. doi: 10.1038/s41598-024-59018-2.
The potential of metal oxides in electrochemical energy storage encouraged our research team to synthesize molybdenum oxide/tungsten oxide nanocomposites (MoO/WO) and their hybrid with reduced graphene oxide (rGO), in the form of MoO/WO/rGO as a substrate with relatively good electrical conductivity and suitable electrochemical active surface. In this context, we presented the electrochemical behavior of these nanocomposites as an electrode for supercapacitors and as a catalyst in the oxidation process of methanol/ethanol. Our engineered samples were characterized by X-ray diffraction pattern and scanning electron microscopy. As a result, MoO/WO and MoO/WO/rGO indicated specific capacitances of 452 and 583 F/g and stability of 88.9% and 92.6% after 2000 consecutive GCD cycles, respectively. Also, MoO/WO and MoO/WO/rGO nanocatalysts showed oxidation current densities of 117 and 170 mA/cm at scan rate of 50 mV/s, and stability of 71 and 89%, respectively in chronoamperometry analysis, in the MOR process. Interestingly, in the ethanol oxidation process, corresponding oxidation current densities of 42 and 106 mA/cm and stability values of 70 and 82% were achieved. MoO/WO and MoO/WO/rGO can be attractive options paving the way for prospective alcohol-based fuel cells.
金属氧化物在电化学储能方面的潜力促使我们的研究团队合成氧化钼/氧化钨纳米复合材料(MoO/WO)及其与还原氧化石墨烯(rGO)的杂化物,即MoO/WO/rGO,作为具有相对良好导电性和合适电化学活性表面的基底。在此背景下,我们展示了这些纳米复合材料作为超级电容器电极以及在甲醇/乙醇氧化过程中作为催化剂的电化学行为。我们制备的样品通过X射线衍射图谱和扫描电子显微镜进行了表征。结果表明,MoO/WO和MoO/WO/rGO的比电容分别为452和583 F/g,在连续2000次恒流充放电循环后稳定性分别为88.9%和92.6%。此外,在甲醇氧化反应(MOR)的计时电流分析中,MoO/WO和MoO/WO/rGO纳米催化剂在扫描速率为50 mV/s时的氧化电流密度分别为117和170 mA/cm²,稳定性分别为71%和89%。有趣的是,在乙醇氧化过程中,相应的氧化电流密度为42和106 mA/cm²,稳定性值分别为70%和82%。MoO/WO和MoO/WO/rGO可能是有吸引力的选择,为未来基于酒精的燃料电池铺平道路。