Suppr超能文献

基于金属氧化物的纳米材料:合成、表征及其在电子和电化学传感器中的应用。

Metal-Oxide Based Nanomaterials: Synthesis, Characterization and Their Applications in Electrical and Electrochemical Sensors.

机构信息

Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy.

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy.

出版信息

Sensors (Basel). 2021 Apr 3;21(7):2494. doi: 10.3390/s21072494.

Abstract

Pure, mixed and doped metal oxides (MOX) have attracted great interest for the development of electrical and electrochemical sensors since they are cheaper, faster, easier to operate and capable of online analysis and real-time identification. This review focuses on highly sensitive chemoresistive type sensors based on doped-SnO, RhO, ZnO-Ca, Sm-CoFeO semiconductors used to detect toxic gases (H, CO, NO) and volatile organic compounds (VOCs) (e.g., acetone, ethanol) in monitoring of gaseous markers in the breath of patients with specific pathologies and for environmental pollution control. Interesting results about the monitoring of biochemical substances as dopamine, epinephrine, serotonin and glucose have been also reported using electrochemical sensors based on hybrid MOX nanocomposite modified glassy carbon and screen-printed carbon electrodes. The fundamental sensing mechanisms and commercial limitations of the MOX-based electrical and electrochemical sensors are discussed providing research directions to bridge the existing gap between new sensing concepts and real-world analytical applications.

摘要

纯、混合和掺杂金属氧化物 (MOX) 因其价格低廉、速度更快、操作更简单、能够在线分析和实时识别,在电气和电化学传感器的开发中引起了极大的兴趣。本综述重点介绍了基于掺杂 SnO、RhO、ZnO-Ca、Sm-CoFeO 半导体的高灵敏度电阻型传感器,用于检测有毒气体 (H、CO、NO) 和挥发性有机化合物 (VOCs)(例如丙酮、乙醇),以监测特定病理患者呼吸中的气体标志物和环境污染控制。还报道了使用基于混合 MOX 纳米复合材料修饰的玻碳和丝网印刷碳电极的电化学传感器来监测生物化学物质(如多巴胺、肾上腺素、血清素和葡萄糖)的有趣结果。讨论了基于 MOX 的电气和电化学传感器的基本传感机制和商业限制,为弥合新传感概念和实际分析应用之间的现有差距提供了研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3578/8038368/103fbbd46bb8/sensors-21-02494-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验