Suppr超能文献

用于探测吞噬性小神经胶质细胞中 SARS-CoV-2 RNA 神经炎症表型的溶酶体 NO 的原位分析的独特合成策略。

Unique Synthetic Strategy for Probing in Situ Lysosomal NO for Screening Neuroinflammatory Phenotypes against SARS-CoV-2 RNA in Phagocytotic Microglia.

机构信息

Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University (SNIoE), Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India.

Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University (SNIoE), Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India.

出版信息

Anal Chem. 2024 May 14;96(19):7479-7486. doi: 10.1021/acs.analchem.3c05981. Epub 2024 May 1.

Abstract

In the pathogenesis of microglia, brain immune cells promote nitrergic stress by overproducing nitric oxide (NO), leading to neuroinflammation. Furthermore, NO has been linked to COVID-19 progression, which has caused significant morbidity and mortality. SARS-CoV-2 infection activates inflammation by releasing excess NO and causing cell death in human microglial clone 3 (HMC3). In addition, NO regulates lysosomal functions and complex machinery to neutralize pathogens through phagocytosis. Therefore, developing lysosome-specific NO probes to monitor phagocytosis in microglia during the COVID-19 infection would be a significant study. Herein, a unique synthetic strategy was adopted to develop a NO selective fluorescent probe, , which can discriminate activated microglia from their resting state. The nonfluorescent exhibits a turn-on response toward NO only at lysosomal pH (4.5-5.5). Quantum chemical calculations (DFT/TD-DFT/PCM) and photophysical study revealed that the photoinduced electron transfer (PET) process is pivotal in tuning optical properties. demonstrated good biocompatibility and lysosomal specificity in activated HMC3 cells. Moreover, it can effectively map the dynamics of lysosomal NO against SARS-CoV-2 RNA-induced neuroinflammation in HMC3. Thus, is a potential fluorescent marker for detecting RNA virus infection and monitoring phagocytosis in HMC3.

摘要

在小胶质细胞的发病机制中,大脑免疫细胞通过过度产生一氧化氮 (NO) 来促进氮应激,导致神经炎症。此外,NO 与 COVID-19 进展有关,COVID-19 导致了大量发病率和死亡率。SARS-CoV-2 感染通过释放过量的 NO 并导致人小胶质细胞克隆 3 (HMC3) 中的细胞死亡来激活炎症。此外,NO 通过吞噬作用调节溶酶体功能和复杂机制以中和病原体。因此,开发针对溶酶体的特异性 NO 探针来监测 COVID-19 感染期间小胶质细胞中的吞噬作用将是一项重要的研究。在此,采用了独特的合成策略来开发一种对 NO 具有选择性的荧光探针 , ,它可以区分激活的小胶质细胞与其静息状态。非荧光的 仅在溶酶体 pH(4.5-5.5)下对 NO 表现出开启响应。量子化学计算(DFT/TD-DFT/PCM)和光物理研究表明,光诱导电子转移(PET)过程是调节光学性质的关键。 在激活的 HMC3 细胞中表现出良好的生物相容性和溶酶体特异性。此外,它可以有效地绘制 SARS-CoV-2 RNA 诱导的神经炎症中 HMC3 中溶酶体 NO 的动力学。因此, 是一种用于检测 RNA 病毒感染和监测 HMC3 中吞噬作用的潜在荧光标记物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验