Ma De, Jin Xiaofei, Sun Shichun, Li Yitao, Wu Xundong, Hu Youneng, Yang Fangchao, Tang Huajin, Zhu Xiaolei, Lin Peng, Pan Gang
College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China.
Research Center for Intelligent Computing Hardware, Zhejiang Lab, Hangzhou 311121, China.
Natl Sci Rev. 2024 Mar 18;11(5):nwae102. doi: 10.1093/nsr/nwae102. eCollection 2024 May.
Spiking neural networks (SNNs) are gaining increasing attention for their biological plausibility and potential for improved computational efficiency. To match the high spatial-temporal dynamics in SNNs, neuromorphic chips are highly desired to execute SNNs in hardware-based neuron and synapse circuits directly. This paper presents a large-scale neuromorphic chip named Darwin3 with a novel instruction set architecture, which comprises 10 primary instructions and a few extended instructions. It supports flexible neuron model programming and local learning rule designs. The Darwin3 chip architecture is designed in a mesh of computing nodes with an innovative routing algorithm. We used a compression mechanism to represent synaptic connections, significantly reducing memory usage. The Darwin3 chip supports up to 2.35 million neurons, making it the largest of its kind on the neuron scale. The experimental results showed that the code density was improved by up to 28.3× in Darwin3, and that the neuron core fan-in and fan-out were improved by up to 4096× and 3072× by connection compression compared to the physical memory depth. Our Darwin3 chip also provided memory saving between 6.8× and 200.8× when mapping convolutional spiking neural networks onto the chip, demonstrating state-of-the-art performance in accuracy and latency compared to other neuromorphic chips.
脉冲神经网络(SNN)因其生物学合理性和提高计算效率的潜力而受到越来越多的关注。为了匹配SNN中的高时空动态,人们迫切希望使用神经形态芯片直接在基于硬件的神经元和突触电路中执行SNN。本文提出了一种名为Darwin3的大规模神经形态芯片,它具有新颖的指令集架构,包括10条基本指令和一些扩展指令。它支持灵活的神经元模型编程和局部学习规则设计。Darwin3芯片架构采用创新的路由算法设计在计算节点网格中。我们使用了一种压缩机制来表示突触连接,显著减少了内存使用。Darwin3芯片支持多达235万个神经元,使其在神经元规模上成为同类中最大的。实验结果表明,Darwin3中的代码密度提高了28.3倍,与物理内存深度相比,通过连接压缩,神经元核心的扇入和扇出分别提高了4096倍和3072倍。在将卷积脉冲神经网络映射到芯片上时,我们的Darwin3芯片还节省了6.8倍至200.8倍的内存,与其他神经形态芯片相比,在准确性和延迟方面展示了最先进的性能。