Esser Steven K, Merolla Paul A, Arthur John V, Cassidy Andrew S, Appuswamy Rathinakumar, Andreopoulos Alexander, Berg David J, McKinstry Jeffrey L, Melano Timothy, Barch Davis R, di Nolfo Carmelo, Datta Pallab, Amir Arnon, Taba Brian, Flickner Myron D, Modha Dharmendra S
Brain-Inspired Computing, IBM Research-Almaden, San Jose, CA 95120
Brain-Inspired Computing, IBM Research-Almaden, San Jose, CA 95120.
Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11441-11446. doi: 10.1073/pnas.1604850113. Epub 2016 Sep 20.
Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware's underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer.
深度网络如今已能够在广泛的识别任务中达到人类水平的性能。与此同时,神经形态计算通过一种基于脉冲神经元、低精度突触和可扩展通信网络的新型芯片架构,展现出了前所未有的能源效率。在此,我们证明,尽管神经形态计算具有新颖的架构原语,但它仍能实现深度卷积网络,该网络能够:(i)在涵盖视觉和语音的八个标准数据集上接近当前最先进的分类准确率;(ii)在保持硬件底层能源效率和高吞吐量的同时进行推理,在上述数据集上以1200至2600帧/秒的速度运行,功耗在25至275毫瓦之间(每瓦有效帧率>6000帧/秒);(iii)可以使用反向传播进行指定和训练,其易用性与当代深度学习相同。这种方法使得深度学习的算法能力与神经形态处理器的效率得以融合,让嵌入式、智能、受大脑启发的计算愿景又向前迈进了一步。