Scherer Kai, Huwer Adrian, Ulber Roland, Wahl Michael
Department of Environmental Planning & Technology, Trier University of Applied Sciences, Environmental Campus Birkenfeld, Hoppstädten-Weiersbach, Germany.
Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany.
3D Print Addit Manuf. 2024 Apr 1;11(2):467-475. doi: 10.1089/3dp.2022.0136. Epub 2024 Apr 16.
The development of innovative production processes and the optimization of photobioreactors play an important role in generating industrial competitive production technologies for phototrophic biofilms. With emerse photobioreactors a technology was introduced that allowed efficient surface attached cultivation of terrestrial cyanobacteria. However, the productivity of emerse photobioreactors depends on the available cultivation surface. By the implementation of biocarriers to the bioreactor volume, the cultivation surface can be increased which potentially improves productivity and thus the production of valuable compounds. To investigate the surface attached cultivation on biocarriers new photobioreactors need to be developed. Additive manufacturing (AM) offers new opportunities for the design of photobioreactors but producing the needed transparent parts can be challenging using AM techniques. In this study an emerse fixed bed photobioreactor was designed for the use of biocarriers and manufactured using different AM processes. To validate the suitability of the photobioreactor for phototrophic cultivation, the optical properties of three-dimensional (3D)-printed transparent parts and postprocessing techniques to improve luminous transmittance of the components were investigated. We found that stereolithography 3D printing can produce parts with a high luminous transmittance of over 85% and that optimal postprocessing by sanding and clear coating improved the clarity and transmittance to more than 90%. Using the design freedom of AM resulted in a bioreactor with reduced part count and improved handling. In summary, we found that modern 3D-printing technologies and materials are suitable for the manufacturing of functional photobioreactor prototypes.
创新生产工艺的发展以及光生物反应器的优化对于生成用于光合生物膜的具有工业竞争力的生产技术起着重要作用。借助浸没式光生物反应器,引入了一种能够高效进行陆生蓝藻表面附着培养的技术。然而,浸没式光生物反应器的生产力取决于可用的培养表面。通过在生物反应器体积中加入生物载体,可以增加培养表面,这有可能提高生产力,进而提高有价值化合物的产量。为了研究在生物载体上进行表面附着培养,需要开发新型光生物反应器。增材制造(AM)为光生物反应器的设计提供了新机会,但使用增材制造技术生产所需的透明部件可能具有挑战性。在本研究中,设计了一种用于生物载体的浸没式固定床光生物反应器,并使用不同的增材制造工艺进行制造。为了验证该光生物反应器用于光合培养的适用性,研究了三维(3D)打印透明部件的光学特性以及提高部件透光率的后处理技术。我们发现,立体光刻3D打印能够生产出透光率超过85%的部件,并且通过打磨和涂覆透明涂层进行的最佳后处理可将清晰度和透光率提高到90%以上。利用增材制造的设计自由度,得到了一种部件数量减少且操作更简便的生物反应器。总之,我们发现现代3D打印技术和材料适用于制造功能性光生物反应器原型。