Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01069 Dresden, Germany.
Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
N Biotechnol. 2017 Oct 25;39(Pt B):222-231. doi: 10.1016/j.nbt.2017.09.001. Epub 2017 Sep 7.
The diversity and complexity of biotechnological applications are constantly increasing, with ever expanding ranges of production hosts, cultivation conditions and measurement tasks. Consequently, many analytical and cultivation systems for biotechnology and bioprocess engineering, such as microfluidic devices or bioreactors, are tailor-made to precisely satisfy the requirements of specific measurements or cultivation tasks. Additive manufacturing (AM) technologies offer the possibility of fabricating tailor-made 3D laboratory equipment directly from CAD designs with previously inaccessible levels of freedom in terms of structural complexity. This review discusses the historical background of these technologies, their most promising current implementations and the associated workflows, fabrication processes and material specifications, together with some of the major challenges associated with using AM in biotechnology/bioprocess engineering. To illustrate the great potential of AM, selected examples in microfluidic devices, 3D-bioprinting/biofabrication and bioprocess engineering are highlighted.
生物技术应用的多样性和复杂性不断增加,生产宿主、培养条件和测量任务的范围不断扩大。因此,许多生物技术和生物工艺工程的分析和培养系统,如微流控装置或生物反应器,都是专门为精确满足特定测量或培养任务的要求而定制的。增材制造(AM)技术提供了从 CAD 设计直接制造定制 3D 实验室设备的可能性,在结构复杂性方面具有以前无法实现的自由度。本综述讨论了这些技术的历史背景、它们目前最有前途的实现方式以及相关的工作流程、制造工艺和材料规格,以及使用 AM 在生物技术/生物工艺工程中相关的一些主要挑战。为了说明 AM 的巨大潜力,本文重点介绍了微流控装置、3D 生物打印/生物制造和生物工艺工程中的一些示例。