文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

几丁质-葡聚糖可改善肠易激综合征的重要病理生理特征。

Chitin-glucan improves important pathophysiological features of irritable bowel syndrome.

机构信息

Department of Digestive Surgery and Transplantation, Lille University, Lille 59037, France.

Intestinal Biotech Development, Faculté de Médicine, Lille 59045, France.

出版信息

World J Gastroenterol. 2024 Apr 28;30(16):2258-2271. doi: 10.3748/wjg.v30.i16.2258.


DOI:10.3748/wjg.v30.i16.2258
PMID:38690023
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11056916/
Abstract

BACKGROUND: Irritable bowel syndrome (IBS) is one of the most frequent and debilitating conditions leading to gastroenterological referrals. However, recommended treatments remain limited, yielding only limited therapeutic gains. Chitin-glucan (CG) is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority. To provide an alternative approach to managing patients with IBS, we performed preclinical molecular, cellular, and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS. AIM: To evaluate the roles of CG in visceral analgesia, intestinal inflammation, barrier function, and to develop computational molecular models. METHODS: Visceral pain was recorded through colorectal distension (CRD) in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS [15 milligrams (mg)/kilogram (kg)] in 33 Sprague-Dawley rats. Intracolonic pressure was regularly assessed during the 9 wk-experiment (weeks 0, 3, 5, and 7) in animals receiving CG ( = 14) at a human equivalent dose (HED) of 1.5 g/d or 3.0 g/d and compared to negative control (tap water, = 11) and positive control (phloroglucinol at 1.5 g/d HED, = 8) groups. The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate (DSS) administered in their drinking water during 14 d. HT-29 cells under basal conditions and after stimulation with lipopolysaccharide (LPS) were treated with CG to evaluate changes in pathways related to analgesia (µ-opioid receptor (MOR), cannabinoid receptor 2 (CB2), peroxisome proliferator-activated receptor alpha, inflammation [interleukin (IL)-10, IL-1b, and IL-8] and barrier function [mucin 2-5AC, claudin-2, zonula occludens (ZO)-1, ZO-2] using the real-time PCR method. Molecular modelling of CG, LPS, lipoteichoic acid (LTA), and phospholipomannan (PLM) was developed, and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations. Data were expressed as the mean ± SEM. RESULTS: Daily CG orally-administered to rats or mice was well tolerated without including diarrhea, visceral hypersensitivity, or inflammation, as evaluated at histological and molecular levels. In a model of CRD, CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14% after 2 wk of administration ( < 0.01) and reduced inflammation intensity by 50%, resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis. To better reproduce the characteristics of visceral pain in patients with IBS, we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity. CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20% five weeks after colitis induction ( < 0.01). When the CG dosage was increased to 3.0 g/d HED, this analgesic effect surpassed that of the spasmolytic agent phloroglucinol, manifesting more rapidly within 3 wk and leading to a 50% inhibition of pain perception ( < 0.0001). The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved, at least in part, a significant induction of MOR, CB2 receptor, and IL-10, as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8. CG also significantly upregulated barrier-related genes including muc5AC, claudin-2, and ZO-2. Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids, sequestering gram-negative LPS and gram-positive LTA bacterial toxins, as well as PLM in fungi at the lowesr energy conformations. CONCLUSION: CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products, suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBS-like symptoms.

摘要

背景:肠易激综合征(IBS)是导致肠胃病转诊的最常见和最使人虚弱的病症之一。然而,推荐的治疗方法仍然有限,仅能取得有限的治疗效果。几丁质葡聚糖(CG)是一种新型的膳食益生元,通常以 1.5-3.0 克/天的剂量用于人类,被欧洲食品安全局认为是一种安全的食品成分。为了提供一种治疗 IBS 患者的替代方法,我们进行了临床前的分子、细胞和动物研究,以评估 CG 在 IBS 涉及的主要病理生理机制中的作用。

目的:评估 CG 在内脏镇痛、肠道炎症、屏障功能方面的作用,并开发计算分子模型。

方法:通过直肠内给予 TNBS(15 毫克/千克)在 33 只 Sprague-Dawley 大鼠中诱导长期结肠高敏性的模型,通过直肠扩张(CRD)记录内脏疼痛。在动物接受 CG( = 14)以 1.5 克/天等效剂量(HED)或 3.0 克/天和阴性对照(自来水, = 11)和阳性对照(1.5 克/天 HED 的 phloroglucinol, = 8)组时,在 9 周实验(第 0、3、5 和 7 周)期间定期评估结肠内压。CG 的抗炎作用通过给予葡聚糖硫酸钠(DSS)在饮用水中诱导的结肠炎的 30 只 C57bl6 雄性小鼠的临床和组织学评分进行评估。在基础条件下和用脂多糖(LPS)刺激后,用 CG 处理 HT-29 细胞,使用实时 PCR 方法评估与镇痛(µ-阿片受体(MOR)、大麻素受体 2(CB2)、过氧化物酶体增殖物激活受体α、炎症[白细胞介素(IL)-10、IL-1b 和 IL-8]和屏障功能[粘蛋白 2-5AC、claudin-2、闭合蛋白(ZO)-1、ZO-2]相关的通路变化。CG、LPS、脂磷壁酸(LTA)和磷壁酸甘露聚糖(PLM)的分子建模,并通过对接和分子动力学模拟评估 CG 螯合微生物致病脂质的能力。数据表示为平均值 ± SEM。

结果:每天口服给予大鼠或小鼠 CG,剂量高达 3 克/天 HED,在组织学和分子水平上均未引起腹泻、内脏高敏性或炎症。在 CRD 模型中,CG 以 3 克/天 HED 的剂量给药 2 周后,显著降低内脏疼痛感知 14%(< 0.01),并降低炎症强度 50%,导致 DSS 诱导的结肠炎小鼠的结肠黏膜完全再生。为了更好地模拟 IBS 患者的内脏疼痛特征,我们随后测量了 CG 在 TNBS 诱导的炎症引起的长期内脏高敏大鼠中的治疗效果。CG 以 1.5 克/天 HED 的剂量给药五周后,降低内脏疼痛感知 20%(< 0.01)。当 CG 剂量增加至 3.0 克/天 HED 时,这种镇痛作用超过了痉挛剂 phloroglucinol,在 3 周内更快地显现出来,并导致疼痛感知抑制 50%(< 0.0001)。CG 的这些镇痛和抗炎作用的潜在分子机制至少部分涉及 MOR、CB2 受体和 IL-10 的显著诱导,以及促炎细胞因子 IL-1b 和 IL-8 的显著减少。CG 还显著上调了包括 muc5AC、claudin-2 和 ZO-2 在内的屏障相关基因。CG 的分子建模揭示了该分子作为微生物致病脂质螯合剂的新特性,可螯合革兰氏阴性 LPS 和革兰氏阳性 LTA 细菌毒素,以及真菌中的 PLM,在最低能量构象下。

结论:CG 通过主基因调控和直接结合微生物产物降低内脏感知和肠道炎症,提示 CG 可能为 IBS 或 IBS 样症状患者提供一种新的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/3d3044367e6b/WJG-30-2258-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/7201e6a3b339/WJG-30-2258-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/a9c88608a221/WJG-30-2258-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/eeac2c73f308/WJG-30-2258-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/7ab0e6bc5524/WJG-30-2258-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/9e35dfed6791/WJG-30-2258-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/32527a3b03e4/WJG-30-2258-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/54cff7b2ee37/WJG-30-2258-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/092ef0a511c6/WJG-30-2258-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/83f8a4850005/WJG-30-2258-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/3d3044367e6b/WJG-30-2258-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/7201e6a3b339/WJG-30-2258-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/a9c88608a221/WJG-30-2258-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/eeac2c73f308/WJG-30-2258-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/7ab0e6bc5524/WJG-30-2258-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/9e35dfed6791/WJG-30-2258-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/32527a3b03e4/WJG-30-2258-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/54cff7b2ee37/WJG-30-2258-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/092ef0a511c6/WJG-30-2258-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/83f8a4850005/WJG-30-2258-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8053/11056916/3d3044367e6b/WJG-30-2258-g010.jpg

相似文献

[1]
Chitin-glucan improves important pathophysiological features of irritable bowel syndrome.

World J Gastroenterol. 2024-4-28

[2]
A Synbiotic Combining Chitin-Glucan and NCFM Induces a Colonic Molecular Signature Soothing Intestinal Pain and Inflammation in an Animal Model of IBS.

Int J Mol Sci. 2024-10-5

[3]
Herbal prescription Chang'an II repairs intestinal mucosal barrier in rats with post-inflammation irritable bowel syndrome.

Acta Pharmacol Sin. 2015-6

[4]
Translational evaluation of Gelsectan effects on gut barrier dysfunction and visceral pain in animal models and irritable bowel syndrome with diarrhoea.

United European Gastroenterol J. 2024-10

[5]
Altered vasoactive intestinal peptides expression in irritable bowel syndrome patients and rats with trinitrobenzene sulfonic acid-induced colitis.

World J Gastroenterol. 2015-1-7

[6]
Calcium Pyruvate Exerts Beneficial Effects in an Experimental Model of Irritable Bowel Disease Induced by DCA in Rats.

Nutrients. 2019-1-10

[7]
Oral treatment with plecanatide or dolcanatide attenuates visceral hypersensitivity activation of guanylate cyclase-C in rat models.

World J Gastroenterol. 2018-5-7

[8]
Multispecies probiotic protects gut barrier function in experimental models.

World J Gastroenterol. 2014-6-14

[9]
The comprehensive pathophysiological changes in a novel rat model of postinflammatory visceral hypersensitivity.

FASEB J. 2019-9-28

[10]
Colonic mucosal N-methyl-D-aspartate receptor mediated visceral hypersensitivity in a mouse model of irritable bowel syndrome.

J Dig Dis. 2016-7

引用本文的文献

[1]
Mapping Research Trends on Intestinal Permeability in Irritable Bowel Syndrome with a Focus on Nutrition: A Bibliometric Analysis.

Nutrients. 2025-3-18

[2]
Adjunct Therapies to Standard Care for IBS and IBD Patients: Digestive Symptoms Improvement and Quality of Life Optimization.

Nutrients. 2024-11-18

[3]
A Synbiotic Combining Chitin-Glucan and NCFM Induces a Colonic Molecular Signature Soothing Intestinal Pain and Inflammation in an Animal Model of IBS.

Int J Mol Sci. 2024-10-5

[4]
Efficacy and tolerability of chitin-glucan combined with simethicone (GASTRAP DIRECT) in irritable bowel syndrome: A prospective, open-label, multicenter study.

World J Gastrointest Pharmacol Ther. 2024-5-28

本文引用的文献

[1]
Under the influence: environmental factors as modulators of neuroinflammation through the IL-10/IL-10R axis.

Front Immunol. 2023

[2]
The gut mucus network: A dynamic liaison between microbes and the immune system.

Semin Immunol. 2023-9

[3]
Faecalibacterium: a bacterial genus with promising human health applications.

FEMS Microbiol Rev. 2023-7-5

[4]
OCP002, a Mixed Agonist of Opioid and Cannabinoid Receptors, Produces Potent Antinociception With Minimized Side Effects.

Anesth Analg. 2023-2-1

[5]
Double-blinded randomised placebo controlled trial of enterosgel (polymethylsiloxane polyhydrate) for the treatment of IBS with diarrhoea (IBS-D).

Gut. 2022-12

[6]
AGA Clinical Practice Guideline on the Pharmacological Management of Irritable Bowel Syndrome With Diarrhea.

Gastroenterology. 2022-7

[7]
AGA Clinical Practice Guideline on the Pharmacological Management of Irritable Bowel Syndrome With Constipation.

Gastroenterology. 2022-7

[8]
Functional bowel disorders with diarrhoea: Clinical guidelines of the United European Gastroenterology and European Society for Neurogastroenterology and Motility.

United European Gastroenterol J. 2022-7

[9]
Chitin Glucan Shifts Luminal and Mucosal Microbial Communities, Improve Epithelial Barrier and Modulates Cytokine Production In Vitro.

Nutrients. 2021-9-18

[10]
Fighting Against Bacterial Lipopolysaccharide-Caused Infections through Molecular Dynamics Simulations: A Review.

J Chem Inf Model. 2021-10-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索