Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China.
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
Environ Sci Technol. 2024 May 14;58(19):8299-8312. doi: 10.1021/acs.est.3c07756. Epub 2024 May 1.
Accurate estimates of fossil fuel CO (FFCO) emissions are of great importance for climate prediction and mitigation regulations but remain a significant challenge for accounting methods relying on economic statistics and emission factors. In this study, we employed a regional data assimilation framework to assimilate NO observations, allowing us to combine observation-constrained NO emissions coemitted with FFCO and grid-specific CO-to-NO emission ratios to infer the daily FFCO emissions over China. The estimated national total for 2016 was 11.4 PgCO·yr, with an uncertainty (1σ) of 1.5 PgCO·yr that accounted for errors associated with atmospheric transport, inversion framework parameters, and CO-to-NO emission ratios. Our findings indicated that widely used "bottom-up" emission inventories generally ignore numerous activity level statistics of FFCO related to energy industries and power plants in western China, whereas the inventories are significantly overestimated in developed regions and key urban areas owing to exaggerated emission factors and inexact spatial disaggregation. The optimized FFCO estimate exhibited more distinct seasonality with a significant increase in emissions in winter. These findings advance our understanding of the spatiotemporal regime of FFCO emissions in China.
准确估算化石燃料 CO(FFCO)排放对于气候预测和减排法规至关重要,但对于依赖经济统计数据和排放因子的核算方法来说仍然是一个重大挑战。在本研究中,我们采用区域数据同化框架同化了 NO 观测数据,使我们能够将与 FFCO 共同排放的观测约束下的 NO 排放与特定网格的 CO 到 NO 排放比结合起来,从而推断中国的每日 FFCO 排放量。估计 2016 年的全国总量为 11.4 PgCO·yr,不确定性(1σ)为 1.5 PgCO·yr,其中包括与大气传输、反演框架参数和 CO 到 NO 排放比相关的误差。我们的研究结果表明,广泛使用的“自上而下”排放清单通常忽略了与中国西部能源产业和发电厂相关的大量 FFCO 活动水平统计数据,而由于夸大的排放因子和不精确的空间分解,在发达地区和关键城市地区,清单被显著高估。优化后的 FFCO 估计显示出更明显的季节性,冬季排放量显著增加。这些发现提高了我们对中国 FFCO 排放时空格局的认识。