Suppr超能文献

具有季节性和空间异质性的反应-扩散-传染病模型的阈值动力学。

Threshold dynamics of a reaction-advection-diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity.

机构信息

School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China.

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, T6G 2G1, Canada.

出版信息

J Math Biol. 2024 Apr 30;88(6):76. doi: 10.1007/s00285-024-02097-6.

Abstract

Most water-borne disease models ignore the advection of water flows in order to simplify the mathematical analysis and numerical computation. However, advection can play an important role in determining the disease transmission dynamics. In this paper, we investigate the long-term dynamics of a periodic reaction-advection-diffusion schistosomiasis model and explore the joint impact of advection, seasonality and spatial heterogeneity on the transmission of the disease. We derive the basic reproduction number and show that the disease-free periodic solution is globally attractive when whereas there is a positive endemic periodic solution and the system is uniformly persistent in a special case when . Moreover, we find that is a decreasing function of the advection coefficients which offers insights into why schistosomiasis is more serious in regions with slow water flows.

摘要

大多数水传播疾病模型为了简化数学分析和数值计算而忽略了水流的平流。然而,平流在确定疾病传播动力学方面可能起着重要作用。本文研究了周期性反应-平流-扩散血吸虫病模型的长期动力学,并探讨了平流、季节性和空间异质性对疾病传播的联合影响。我们推导出基本再生数 ,并表明当 时无病周期解是全局吸引的,而当 时存在正的地方周期解,系统在一个特殊情况下是一致持续的。此外,我们发现 是平流系数的递减函数,这为为什么在水流缓慢的地区血吸虫病更严重提供了一些见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1980/11063003/c3b41d722149/285_2024_2097_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验