Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
School of Science, Chang'an University, Xi'an, 710064, China.
Bull Math Biol. 2022 Nov 11;84(12):146. doi: 10.1007/s11538-022-01105-4.
The statistics of COVID-19 cases exhibits seasonal fluctuations in many countries. In this paper, we propose a COVID-19 epidemic model with seasonality and define the basic reproduction number [Formula: see text] for the disease transmission. It is proved that the disease-free equilibrium is globally asymptotically stable when [Formula: see text], while the disease is uniformly persistent and there exists at least one positive periodic solution when [Formula: see text]. Numerically, we observe that there is a globally asymptotically stable positive periodic solution in the case of [Formula: see text]. Further, we conduct a case study of the COVID-19 transmission in the USA by using statistical data.
许多国家的 COVID-19 病例统计数据呈现季节性波动。在本文中,我们提出了一个具有季节性的 COVID-19 传染病模型,并定义了疾病传播的基本再生数 [Formula: see text]。证明了当 [Formula: see text] 时,无病平衡点全局渐近稳定,而当 [Formula: see text] 时,疾病是一致持久的,并且存在至少一个正周期解。数值上,我们观察到在 [Formula: see text] 的情况下存在全局渐近稳定的正周期解。此外,我们通过使用统计数据对美国的 COVID-19 传播进行了案例研究。