Department of Radiology, Shantou Central Hospital, No. 114 Waima Rd, Shantou 515031, People's Republic of China.
Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
AJR Am J Roentgenol. 2024 Jul;223(1):e2431077. doi: 10.2214/AJR.24.31077. Epub 2024 May 1.
CT is increasingly detecting thyroid nodules. Prior studies indicated a potential role of CT-based radiomics models in characterizing thyroid nodules, although these studies lacked external validation. The purpose of this study was to develop and validate a CT-based radiomics model for the differentiation of benign and malignant thyroid nodules. This retrospective study included 378 patients (mean age, 46.3 ± 13.9 [SD] years; 86 men, 292 women) with 408 resected thyroid nodules (145 benign, 263 malignant) from two centers (center 1: 293 nodules, January 2018 to December 2022; center 2: 115 nodules, January 2020 to December 2022) who underwent preoperative multiphase neck CT (noncontrast, arterial, and venous phases). Nodules from center 1 were divided into training ( = 206) and internal validation ( = 87) sets; all nodules from center 2 formed an external validation set. Radiologists assessed nodules for morphologic CT features. Nodules were manually segmented on all phases, and radiomic features were extracted. Conventional (clinical and morphologic CT), noncontrast CT radiomics, arterial phase CT radiomics, venous phase CT radiomics, multiphase CT radiomics, and combined (clinical, morphologic CT, and multiphase CT radiomics) models were established using feature selection methods and evaluated by ROC curve analysis, calibration-curve analysis, and decision-curve analysis. The combined model included patient age, three morphologic features (cystic change, "edge interruption" sign, abnormal cervical lymph nodes), and 28 radiomic features (from all three phases). In the external validation set, the combined model had an AUC of 0.923, and, at an optimal threshold derived in the training set, sensitivity of 84.0%, specificity of 94.1%, and accuracy of 87.0%. In the external validation set, the AUC was significantly higher for the combined model than for the conventional model (0.827), noncontrast CT radiomics model (0.847), arterial phase CT radiomics model (0.826), venous phase CT radiomics model (0.773), and multiphase CT radiomics model (0.824) (all < .05). In the external validation set, the calibration curves indicated the lowest (i.e., best) Brier score for the combined model; in the decision-curve analysis, the combined model had the highest net benefit for most of the range of threshold probabilities. A combined model incorporating clinical, morphologic CT, and multiphase CT radiomics features exhibited robust performance in differentiating benign and malignant thyroid nodules. The combined radiomics model may help guide further management for thyroid nodules detected on CT.
CT 越来越多地检测到甲状腺结节。先前的研究表明,基于 CT 的放射组学模型在甲状腺结节特征描述方面具有潜在作用,尽管这些研究缺乏外部验证。本研究旨在开发和验证一种基于 CT 的放射组学模型,用于区分甲状腺良恶性结节。本回顾性研究纳入了来自两个中心(中心 1:293 个结节,2018 年 1 月至 2022 年 12 月;中心 2:115 个结节,2020 年 1 月至 2022 年 12 月)的 378 例(男 86 例,女 292 例)患者,共 408 个经手术切除的甲状腺结节(良性 145 个,恶性 263 个),所有患者术前均接受多期颈部 CT(非对比、动脉期和静脉期)检查。中心 1 的结节分为训练集(=206)和内部验证集(=87);中心 2 的所有结节形成外部验证集。放射科医生评估结节的形态 CT 特征。所有阶段均对结节进行手动分割,并提取放射组学特征。使用特征选择方法建立常规(临床和形态 CT)、非对比 CT 放射组学、动脉期 CT 放射组学、静脉期 CT 放射组学、多期 CT 放射组学和联合(临床、形态 CT 和多期 CT 放射组学)模型,并通过 ROC 曲线分析、校准曲线分析和决策曲线分析进行评估。联合模型包括患者年龄、三个形态特征(囊性变、“边缘中断”征、异常颈部淋巴结)和 28 个放射组学特征(来自所有三个阶段)。在外部验证集中,联合模型的 AUC 为 0.923,在训练集中得出的最佳阈值下,敏感性为 84.0%,特异性为 94.1%,准确性为 87.0%。在外部验证集中,联合模型的 AUC 显著高于常规模型(0.827)、非对比 CT 放射组学模型(0.847)、动脉期 CT 放射组学模型(0.826)、静脉期 CT 放射组学模型(0.773)和多期 CT 放射组学模型(0.824)(均<0.05)。在外部验证集中,校准曲线表明联合模型的 Brier 评分最低(即最佳);在决策曲线分析中,联合模型在大多数阈值概率范围内具有最高的净获益。纳入临床、形态 CT 和多期 CT 放射组学特征的联合模型在区分甲状腺良恶性结节方面表现出稳健的性能。联合放射组学模型可能有助于指导 CT 检测到的甲状腺结节的进一步管理。