Suppr超能文献

基于深度学习的多肋形状生成模型开发流水线,以群体百分位数或人体测量学作为预测因子。

A deep learning-based pipeline for developing multi-rib shape generative model with populational percentiles or anthropometrics as predictors.

机构信息

Research Investigator in International Center for Automotive Medicine (ICAM), University of Michigan, USA.

Research Scientist in International Center for Automotive Medicine (ICAM), University of Michigan, USA.

出版信息

Comput Med Imaging Graph. 2024 Jul;115:102388. doi: 10.1016/j.compmedimag.2024.102388. Epub 2024 Apr 25.

Abstract

Rib cross-sectional shapes (characterized by the outer contour and cortical bone thickness) affect the rib mechanical response under impact loading, thereby influence the rib injury pattern and risk. A statistical description of the rib shapes or their correlations to anthropometrics is a prerequisite to the development of numerical human body models representing target demographics. Variational autoencoders (VAE) as anatomical shape generators remain to be explored in terms of utilizing the latent vectors to control or interpret the representativeness of the generated results. In this paper, we propose a pipeline for developing a multi-rib cross-sectional shape generative model from CT images, which consists of the achievement of rib cross-sectional shape data from CT images using an anatomical indexing system and regular grids, and a unified framework to fit shape distributions and associate shapes to anthropometrics for different rib categories. Specifically, we collected CT images including 3193 ribs, surface regular grid is generated for each rib based on anatomical coordinates, the rib cross-sectional shapes are characterized by nodal coordinates and cortical bone thickness. The tensor structure of shape data based on regular grids enable the implementation of CNNs in the conditional variational autoencoder (CVAE). The CVAE is trained against an auxiliary classifier to decouple the low-dimensional representations of the inter- and intra- variations and fit each intra-variation by a Gaussian distribution simultaneously. Random tree regressors are further leveraged to associate each continuous intra-class space with the corresponding anthropometrics of the subjects, i.e., age, height and weight. As a result, with the rib class labels and the latent vectors sampled from Gaussian distributions or predicted from anthropometrics as the inputs, the decoder can generate valid rib cross-sectional shapes of given class labels (male/female, 2nd to 11th ribs) for arbitrary populational percentiles or specific age, height and weight, which paves the road for future biomedical and biomechanical studies considering the diversity of rib shapes across the population.

摘要

肋骨的横截面形状(由外轮廓和皮质骨厚度特征)会影响肋骨在冲击载荷下的力学响应,从而影响肋骨损伤的模式和风险。对肋骨形状进行统计描述或对其与人体测量学的相关性进行描述是开发代表目标人群的数值人体模型的前提。变分自动编码器(VAE)作为解剖形状生成器,在利用潜在向量来控制或解释生成结果的代表性方面仍有待进一步研究。在本文中,我们提出了一种从 CT 图像开发多肋骨横截面形状生成模型的管道,该管道包括使用解剖索引系统和规则网格从 CT 图像中获取肋骨横截面形状数据,以及一个统一的框架来拟合形状分布并将形状与不同肋骨类别的人体测量学相关联。具体来说,我们收集了包括 3193 根肋骨的 CT 图像,基于解剖坐标为每根肋骨生成了表面规则网格,肋骨的横截面形状由节点坐标和皮质骨厚度来描述。基于规则网格的形状数据张量结构使条件变分自动编码器(CVAE)中的 CNN 得以实现。CVAE 针对辅助分类器进行训练,以解耦内-间变异性的低维表示,并同时用高斯分布拟合每个内变异性。进一步利用随机树回归器将每个连续的类内空间与受试者的相应人体测量学(即年龄、身高和体重)相关联。结果,在输入肋骨类标签以及从高斯分布中采样的或从人体测量学中预测的潜在向量的情况下,解码器可以为任意人口百分位数或特定年龄、身高和体重生成给定类标签(男性/女性,第 2 至 11 肋骨)的有效肋骨横截面形状,为未来考虑人群中肋骨形状多样性的生物医学和生物力学研究铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验