Suppr超能文献

一项综合的荟萃分析和系统评价,通过挥发性有机化合物对 COVID-19 进行呼吸分析检测。

A comprehensive meta-analysis and systematic review of breath analysis in detection of COVID-19 through Volatile organic compounds.

机构信息

Department of Anesthesiology & Perioperative Medicine, University of Louisville, Louisville, KY, USA.

Biometrics and Data Science, Fosun Pharma, Beijing, PR China.

出版信息

Diagn Microbiol Infect Dis. 2024 Jul;109(3):116309. doi: 10.1016/j.diagmicrobio.2024.116309. Epub 2024 Apr 27.

Abstract

BACKGROUND

The COVID-19 pandemic had profound global impacts on daily lives, economic stability, and healthcare systems. Diagnosis of COVID-19 infection via RT-PCR was crucial in reducing spread of disease and informing treatment management. While RT-PCR is a key diagnostic test, there is room for improvement in the development of diagnostic criteria. Identification of volatile organic compounds (VOCs) in exhaled breath provides a fast, reliable, and economically favorable alternative for disease detection.

METHODS

This meta-analysis analyzed the diagnostic performance of VOC-based breath analysis in detection of COVID-19 infection. A systematic review of twenty-nine papers using the grading criteria from Newcastle-Ottawa Scale (NOS) and PRISMA guidelines was conducted.

RESULTS

The cumulative results showed a sensitivity of 0.92 (95 % CI, 90 %-95 %) and a specificity of 0.90 (95 % CI 87 %-93 %). Subgroup analysis by variant demonstrated strong sensitivity to the original strain compared to the Omicron and Delta variant in detection of SARS-CoV-2 infection. An additional subgroup analysis of detection methods showed eNose technology had the highest sensitivity when compared to GC-MS, GC-IMS, and high sensitivity-MS.

CONCLUSION

Overall, these results support the use of breath analysis as a new detection method of COVID-19 infection.

摘要

背景

COVID-19 大流行对日常生活、经济稳定和医疗保健系统产生了深远的全球影响。通过 RT-PCR 对 COVID-19 感染进行诊断对于减少疾病传播和指导治疗管理至关重要。虽然 RT-PCR 是一种重要的诊断测试,但在制定诊断标准方面仍有改进的空间。呼气中挥发性有机化合物 (VOC) 的鉴定为疾病检测提供了一种快速、可靠且经济有利的替代方法。

方法

本荟萃分析分析了基于 VOC 的呼吸分析在 COVID-19 感染检测中的诊断性能。使用纽卡斯尔-渥太华量表 (NOS) 和 PRISMA 指南的分级标准对 29 篇论文进行了系统评价。

结果

累积结果显示,敏感性为 0.92(95%CI,90%-95%),特异性为 0.90(95%CI,87%-93%)。按变异体进行的亚组分析显示,与 Omicron 和 Delta 变体相比,原始菌株对 SARS-CoV-2 感染的检测具有很强的敏感性。对检测方法的进一步亚组分析表明,与 GC-MS、GC-IMS 和高灵敏度-MS 相比,eNose 技术的敏感性最高。

结论

总的来说,这些结果支持将呼吸分析作为 COVID-19 感染的新检测方法。

相似文献

3
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.用于 SARS-CoV-2 感染诊断的快速、即时抗原检测。
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.
5
Thoracic imaging tests for the diagnosis of COVID-19.用于 COVID-19 诊断的胸部影像学检查。
Cochrane Database Syst Rev. 2022 May 16;5(5):CD013639. doi: 10.1002/14651858.CD013639.pub5.
6
Non-invasive diagnostic tests for Helicobacter pylori infection.幽门螺杆菌感染的非侵入性诊断测试。
Cochrane Database Syst Rev. 2018 Mar 15;3(3):CD012080. doi: 10.1002/14651858.CD012080.pub2.
10
Measures implemented in the school setting to contain the COVID-19 pandemic.学校为控制 COVID-19 疫情而采取的措施。
Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029.

本文引用的文献

6
Breath testing for SARS-CoV-2 infection.呼吸检测 SARS-CoV-2 感染。
EBioMedicine. 2023 Jun;92:104584. doi: 10.1016/j.ebiom.2023.104584. Epub 2023 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验