College of Science, Northeastern University, Shenyang, 110004, China.
College of Science, Northeastern University, Shenyang, 110004, China; Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China.
Biosens Bioelectron. 2024 Aug 15;258:116336. doi: 10.1016/j.bios.2024.116336. Epub 2024 Apr 25.
As pure antipodes may differ in biological interactions, pharmacology, and toxicity, discrimination of enantiomers is important in the pharmaceutical and agrochemical industries. Two major challenges in enantiomer determination are transducing and amplifying the distinct chiral-recognition signals. In this study, a light-sensitive organic photoelectrochemical transistor (OPECT) with homochiral character is developed for enantiomer discrimination. Demonstrated with the discrimination of glucose enantiomers, the photoelectrochemically active gate electrode is prepared by integrating Au nanoparticles (AuNPs) and a chiral Cu(II)-metal-organic framework (c-CuMOF) onto TiO nanotube arrays (TNT). The captured glucose enantiomers are oxidized to hydrogen peroxide (HO) by the oxidase-mimicking AuNPs-loaded c-CuMOF. Based on the confinement effect of the mesopocket structure of the c-CuMOF and the remarkable charge transfer ability of the 1D nanotubular architecture, variations in HO yield are translated into significant changes in OPECT drain currents (I) by inducing a catalytic precipitation reaction. Variations in I confer a sensitive discrimination of glucose enantiomers with a limit of detection (LOD) of 0.07 μM for L-Glu and 0.05 μM for D-Glu. This enantiomer-driven gate electrode response strategy not only provides a new route for enantiomer identification, but also helps to understand the origin of the high stereoselectivity in living systems.
由于对映体可能在生物相互作用、药理学和毒性方面存在差异,因此在制药和农化行业中,对映异构体的区分非常重要。对映体测定的两个主要挑战是转换和放大独特的手性识别信号。在这项研究中,开发了一种具有手性特征的光敏感有机光电晶体管(OPECT),用于对映体鉴别。通过对葡萄糖对映体的鉴别进行了演示,光电化学活性栅电极是通过将金纳米粒子(AuNPs)和手性 Cu(II)-金属-有机骨架(c-CuMOF)集成到 TiO2 纳米管阵列(TNT)上制备的。负载有 AuNPs 的 c-CuMOF 模拟氧化酶将捕获的葡萄糖对映体氧化为过氧化氢(HO)。基于 c-CuMOF 的介孔结构的限制效应和 1D 纳米管状结构的显著电荷转移能力,HO 产率的变化通过诱导催化沉淀反应转化为 OPECT 漏极电流(I)的显著变化。I 的变化对葡萄糖对映体进行了灵敏的区分,L-Glu 的检测限(LOD)为 0.07 μM,D-Glu 的 LOD 为 0.05 μM。这种对映体驱动的栅电极响应策略不仅为对映体鉴定提供了新途径,还有助于理解生物体系中高立体选择性的起源。