Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Curr Biol. 2024 Jun 17;34(12):2606-2622.e9. doi: 10.1016/j.cub.2024.04.028. Epub 2024 Apr 30.
Mitochondrial cristae architecture is crucial for optimal respiratory function of the organelle. Cristae shape is maintained in part by the mitochondrial contact site and cristae organizing system (MICOS) complex. While MICOS is required for normal cristae morphology, the precise mechanistic role of each of the seven human MICOS subunits, and how the complex coordinates with other cristae-shaping factors, has not been fully determined. Here, we examine the MICOS complex in Schizosaccharomyces pombe, a minimal model whose genome only encodes for four core subunits. Using an unbiased proteomics approach, we identify a poorly characterized inner mitochondrial membrane protein that interacts with MICOS and is required to maintain cristae morphology, which we name Mmc1. We demonstrate that Mmc1 works in concert with MICOS to promote normal mitochondrial morphology and respiratory function. Mmc1 is a distant relative of the dynamin superfamily of proteins (DSPs), GTPases, which are well established to shape and remodel membranes. Similar to DSPs, Mmc1 self-associates and forms high-molecular-weight assemblies. Interestingly, however, Mmc1 is a pseudoenzyme that lacks key residues required for GTP binding and hydrolysis, suggesting that it does not dynamically remodel membranes. These data are consistent with the model that Mmc1 stabilizes cristae architecture by acting as a scaffold to support cristae ultrastructure on the matrix side of the inner membrane. Our study reveals a new class of proteins that evolved early in fungal phylogeny and is required for the maintenance of cristae architecture. This highlights the possibility that functionally analogous proteins work with MICOS to establish cristae morphology in metazoans.
线粒体嵴的结构对于细胞器的最佳呼吸功能至关重要。嵴的形状部分由线粒体接触位点和嵴组织系统 (MICOS) 复合物维持。虽然 MICOS 是正常嵴形态所必需的,但七个人类 MICOS 亚基中的每一个的确切机械作用,以及该复合物如何与其他嵴成形因子协调,尚未完全确定。在这里,我们研究了裂殖酵母中的 MICOS 复合物,裂殖酵母是一种最小的模型生物,其基因组仅编码四个核心亚基。我们使用一种无偏的蛋白质组学方法,鉴定出一种与 MICOS 相互作用并维持嵴形态所必需的、特征描述较少的线粒体内膜蛋白,我们将其命名为 Mmc1。我们证明 Mmc1 与 MICOS 协同作用,以促进正常的线粒体形态和呼吸功能。Mmc1 是一个与 dynamin 超级家族蛋白(DSPs)、GTPases 的远亲,该蛋白家族的 GTPases 已被证实可塑造和重塑膜。与 DSPs 相似,Mmc1 自身缔合并形成高分子量组装体。然而,有趣的是,Mmc1 是一种伪酶,缺乏 GTP 结合和水解所必需的关键残基,表明它不会动态重塑膜。这些数据与以下模型一致,即 Mmc1 通过充当支架来支持内膜基质侧的嵴超微结构,从而稳定嵴结构。我们的研究揭示了一类在真菌系统发育早期进化而来的新蛋白质,它们是维持嵴结构所必需的。这突出了功能类似的蛋白质与 MICOS 一起在后生动物中建立嵴形态的可能性。