Suppr超能文献

超声心动图与多平面门控采集扫描在预测癌症治疗相关心血管功能障碍中的比较。

Comparison of Echocardiography and Multi-Planar Gated Acquisition Scans for Predicting Cancer-Treatment-Related Cardiovascular Dysfunction.

机构信息

Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.

Department of Medicine, The University of Sydney Nepean Clinical School, Kingswood, NSW, Australia.

出版信息

Heart Lung Circ. 2024 May;33(5):693-703. doi: 10.1016/j.hlc.2024.03.010. Epub 2024 May 1.

Abstract

BACKGROUND

Current guidelines recommend using sequential cardiac imaging to monitor for cancer treatment-related cardiac dysfunction (CTRCD) in patients undergoing potentially cardiotoxic chemotherapy. Multiple different imaging cardiac modalities are available and there are few prospective head-to-head comparative studies to help guide treatment.

OBJECTIVES

To perform an exploratory prospective cohort study of "real-world" CTRCD comparing multigated acquisition nuclear ventriculography (MUGA) at the referring cancer specialist's discretion with a novel echocardiographic strategy at an Australian tertiary hospital.

METHOD

Patients were recruited from haematology and oncology outpatient clinics if they were scheduled for treatment with anthracyclines and/or trastuzumab. Patients underwent simultaneous MUGA-based cardiac imaging (conventional strategy) at a frequency according to evidenced-based guidelines in addition to researcher-conducted echocardiographic imaging. The echocardiographic imaging was performed in all patients at time points recommended by international society guidelines. Outcomes included adherence to guideline recommendations, concordance between MUGA and echocardiographic left ventricular ejection fraction (LVEF) measurements, and detection of cardiac dysfunction (defined as >5% LVEF decrement from baseline by three-dimensional [3D]-LVEF). A secondary end point was accuracy of global longitudinal strain in predicting cardiac dysfunction.

RESULTS

In total, 35 patients were recruited, including 15 with breast cancer, 19 with haematological malignancy, and one with gastric cancer. MUGA and echocardiographic LVEF measurements correlated poorly with limits of agreement of 30% between 3D-LVEF and MUGA-LVEF and 37% for 3D-LVEF and MUGA-LVEF. Only one case (2.9%) of CTRCD was diagnosed by MUGA, compared with 12 (34.2%) cases by echocardiography. Four (4) patients had >10% decrement in 3D-LVEF that was not detected by MUGA. Global longitudinal strain at 2 months displayed significant ability to predict CTRCD (area under the curve, 0.75, 95% confidence interval, 0.55-0.94).

CONCLUSIONS

The MUGA correlates poorly with echocardiographic assessment with substantial discrepancy between MUGA and echocardiography in CTRCD diagnosis. Echocardiographic and MUGA imaging strategies should not be considered equivalent for imaging cancer patients, and a single imaging modality should ideally be used per patient to prevent misdiagnosis by inter-modality variation These findings should be considered hypothesis-generating and require confirmation with larger studies.

摘要

背景

目前的指南建议使用连续心脏成像来监测接受潜在心脏毒性化疗的患者的癌症治疗相关心脏功能障碍(CTRCD)。有多种不同的心脏成像方式可供选择,但是很少有前瞻性头对头比较研究来帮助指导治疗。

目的

对澳大利亚一家三级医院的新型超声心动图策略与癌症专家自行选择的多门控采集核心室造影术(MUGA)进行前瞻性探索性队列研究,以比较“真实世界”中的 CTRCD。

方法

如果血液科和肿瘤科门诊患者计划接受蒽环类药物和/或曲妥珠单抗治疗,则招募这些患者。除了研究者进行的超声心动图检查外,患者还根据循证指南的频率同时接受基于 MUGA 的心脏成像(常规策略)。所有患者均按照国际社会指南推荐的时间点进行超声心动图成像。研究结果包括遵循指南建议、MUGA 和超声心动图左心室射血分数(LVEF)测量之间的一致性,以及检测心脏功能障碍(通过三维 [3D]-LVEF 定义为与基线相比 LVEF 下降>5%)。次要终点是整体纵向应变预测心脏功能障碍的准确性。

结果

共招募了 35 名患者,包括 15 名乳腺癌患者、19 名血液系统恶性肿瘤患者和 1 名胃癌患者。MUGA 和超声心动图 LVEF 测量值之间的相关性较差,3D-LVEF 与 MUGA-LVEF 的一致性界限为 30%,3D-LVEF 与 MUGA-LVEF 的一致性界限为 37%。仅通过 MUGA 诊断出 1 例(2.9%) CTRCD,而通过超声心动图诊断出 12 例(34.2%)。4 例(4 例)患者的 3D-LVEF 下降超过 10%,但未被 MUGA 检测到。2 个月时的整体纵向应变显示出预测 CTRCD 的显著能力(曲线下面积为 0.75,95%置信区间为 0.55-0.94)。

结论

MUGA 与超声心动图评估相关性较差,在 CTRCD 诊断中 MUGA 与超声心动图之间存在明显差异。不应该认为 MUGA 和超声心动图成像策略可用于成像癌症患者,理想情况下,每个患者应使用单一成像方式,以防止因模态间变化而导致误诊。这些发现应被视为产生假说的依据,需要更大的研究来证实。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验