Mahdy Omar S, Ali Ali B M, Mostafa Loghman, Agarwal Diwakar, Dhawan Aashim, Mabrouk Abdelkader, Kolsi Lioua, Said Lotfi Ben
Department of Chemical Engineering, University of Technology, 52 Alsinaa St., P.O. Box 35010, Baghdad, Iraq.
Air Conditioning Engineering Department, College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq.
Sci Rep. 2025 Jul 5;15(1):24004. doi: 10.1038/s41598-025-07824-7.
Thermal stability in lithium-ion batteries is crucial for ensuring safety in energy storage systems and electric vehicles, where thermal runaway poses significant risks due to localized heating and the uncontrolled propagation of exothermic reactions. This study investigates the thermal dynamics in lithium-ion batteries under various critical heating conditions using a three-dimensional finite volume model. The research examines the effects of heating power, heating positions, and cell spacing on thermal runaway propagation patterns, focusing on both single-cell and multi-cell battery pack configurations. Analysis revealed that the direction of heat flow plays a significant role in thermal behavior, with side heating leading to faster runaway and central heating initially delaying initiation before accelerating at specific thresholds. Key findings indicate that lithium iron fluoride cathode materials exhibit superior thermal stability compared to nickel-manganese-cobalt-aluminum oxide types, and increasing cell spacing reduces the severity and timing of thermal runaway. A comparative evaluation of heating scenarios-side, central, and vertical-highlighted vertical 20 mm heating as the safest option. Moreover, the study details the heat release dynamics of different chemical processes: the negative solvent contributed the most significant heat generation (1.78 kW), while the solid electrolyte interphase layer produced the lowest (0.133 kW). Non-linear impacts of heating power were also observed, with a 7 kW/m configuration producing higher peak temperatures than 10 kW/m and resulting in an 18% reduction in thermal initiation time. These results improve the understanding of thermal runaway under varying conditions and provide insights for designing safer lithium-ion battery systems, with implications for thermal management in automotive, aerospace, and energy storage applications.
锂离子电池的热稳定性对于确保储能系统和电动汽车的安全至关重要,在这些系统中,热失控由于局部加热和放热反应的不受控制传播而带来重大风险。本研究使用三维有限体积模型研究了锂离子电池在各种临界加热条件下的热动力学。该研究考察了加热功率、加热位置和电池间距对热失控传播模式的影响,重点关注单电池和多电池组配置。分析表明,热流方向在热行为中起着重要作用,侧面加热导致更快的失控,而中央加热最初会延迟热失控的起始,然后在特定阈值时加速。主要发现表明,与镍锰钴铝氧化物类型相比,锂铁氟化物阴极材料表现出卓越的热稳定性,并且增加电池间距可降低热失控的严重程度和发生时间。对侧面、中央和垂直加热场景的比较评估突出了垂直20毫米加热是最安全的选择。此外,该研究详细介绍了不同化学过程的热释放动态:负极溶剂产生的热量最为显著(1.78千瓦),而固体电解质界面层产生的热量最低(0.133千瓦)。还观察到加热功率的非线性影响,7千瓦/米的配置产生的峰值温度高于10千瓦/米,并且热起始时间减少了18%。这些结果增进了对不同条件下热失控的理解,并为设计更安全的锂离子电池系统提供了见解,对汽车、航空航天和储能应用中的热管理具有重要意义。