Hemachandran Sriram, Hu Ning, Kane Catherine J, Green Steven H
Department of Biology, University of Iowa, Iowa City, IA, United States.
Front Cell Neurosci. 2024 Apr 17;18:1363219. doi: 10.3389/fncel.2024.1363219. eCollection 2024.
Cochlear afferent synapses connecting inner hair cells to spiral ganglion neurons are susceptible to excitotoxic trauma on exposure to loud sound, resulting in a noise-induced cochlear synaptopathy (NICS). Here we assessed the ability of cyclic AMP-dependent protein kinase (PKA) signaling to promote cochlear synapse regeneration, inferred from its ability to promote axon regeneration in axotomized CNS neurons, another system refractory to regeneration.
We mimicked NICS by applying a glutamate receptor agonist, kainic acid (KA) to organotypic cochlear explant cultures and experimentally manipulated cAMP signaling to determine whether PKA could promote synapse regeneration. We then delivered the cAMP phosphodiesterase inhibitor rolipram via implanted subcutaneous minipumps in noise-exposed CBA/CaJ mice to test the hypothesis that cAMP signaling could promote cochlear synapse regeneration .
We showed that the application of the cell membrane-permeable cAMP agonist 8-cpt-cAMP or the cAMP phosphodiesterase inhibitor rolipram promotes significant regeneration of synapses within twelve hours after their destruction by KA. This is independent of neurotrophin-3, which also promotes synapse regeneration. Moreover, of the two independent signaling effectors activated by cAMP - the cAMP Exchange Protein Activated by cAMP and the cAMP-dependent protein kinase - it is the latter that mediates synapse regeneration. Finally, we showed that systemic delivery of rolipram promotes synapse regeneration following NICS.
experiments show that cAMP signaling promotes synapse regeneration after excitotoxic destruction of cochlear synapses and does so via PKA signaling. The cAMP phosphodiesterase inhibitor rolipram promotes synapse regeneration in noise-exposed mice. Systemic administration of rolipram or similar compounds appears to provide a minimally invasive therapeutic approach to reversing synaptopathy post-noise.
连接内毛细胞与螺旋神经节神经元的耳蜗传入突触在暴露于高强度声音时易受兴奋性毒性损伤,导致噪声性耳蜗突触病变(NICS)。在此,我们评估了环磷酸腺苷依赖性蛋白激酶(PKA)信号传导促进耳蜗突触再生的能力,这是根据其促进轴突切断的中枢神经系统神经元轴突再生的能力推断而来的,而中枢神经系统神经元轴突再生也是一个再生困难的系统。
我们通过向耳蜗器官型外植体培养物中应用谷氨酸受体激动剂 kainic acid(KA)来模拟 NICS,并通过实验操纵 cAMP 信号传导来确定 PKA 是否能促进突触再生。然后,我们通过植入皮下微型泵向噪声暴露的 CBA/CaJ 小鼠体内递送 cAMP 磷酸二酯酶抑制剂咯利普兰,以检验 cAMP 信号传导可以促进耳蜗突触再生这一假设。
我们发现,应用细胞膜可渗透的 cAMP 激动剂 8 - cpt - cAMP 或 cAMP 磷酸二酯酶抑制剂咯利普兰可促进突触在被 KA 破坏后的 12 小时内显著再生。这一过程独立于神经营养因子 - 3,神经营养因子 - 3 也能促进突触再生。此外,在由 cAMP 激活的两个独立信号效应器——cAMP 激活的交换蛋白和 cAMP 依赖性蛋白激酶中,是后者介导了突触再生。最后,我们表明全身递送咯利普兰可促进 NICS 后的突触再生。
实验表明,cAMP 信号传导在耳蜗突触受到兴奋性毒性破坏后可促进突触再生,且是通过 PKA 信号传导实现的。cAMP 磷酸二酯酶抑制剂咯利普兰可促进噪声暴露小鼠的突触再生。全身施用咯利普兰或类似化合物似乎为逆转噪声后突触病变提供了一种微创治疗方法。