Xu Hao, Liu Shuai, Li Zhiang, Ding Fan, Liu Jie, Wang Weimin, Song Kaikai, Liu Ting, Hu Lina
School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China.
School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China.
J Colloid Interface Sci. 2024 Aug 15;668:634-645. doi: 10.1016/j.jcis.2024.04.201. Epub 2024 Apr 29.
Solid polymer electrolytes (SPEs) have been considered the most promising separators for all-solid-state lithium metal batteries (ASSLMBs) due to their ease of processing and low cost. However, the practical applications of SPEs in ASSLMBs are limited by their low ionic conductivities and mechanical strength. Herein, we developed a three-dimensional (3D) interconnected MXene (TiCT) network and LiLaZrTaO (LLZTO) particles synergistically reinforced polyethylene oxide (PEO)-based SPE, where the association of Li with ether-oxygen in PEO could be significantly weakened through the Lewis acid-base interactions between the electron-absorbing group (Ti-F, -O-) of TiCT and Li. Besides, the TFSI in lithium salts could be immobilized by hydrogen bonds from the Ti-OH of TiCT. The 3D interconnected TiCT network not only alleviated the agglomeration of inorganic fillers (LLZTO), but also improved the mechanical strength of composite solid electrolyte (CSE). Consequently, the assembled Li||CSE||Li symmetric battery showed excellent cycling stability at 35 ℃ (stable cycling over 3000 h at 0.1 mA cm, 0.1 mAh cm) and -2 ℃ (stable cycling over 2500 h at 0.05 mA cm, 0.05 mAh cm). Impressively, the LiFePO||CSE||Li battery showed a high discharge capacity of 145.3 mAh/g at 0.3 C after 300 cycles at 35 ℃. This rational structural design provided a new strategy for the preparation of high-performance solid-state electrolytes for lithium metal batteries.
固态聚合物电解质(SPEs)因其易于加工和低成本,被认为是全固态锂金属电池(ASSLMBs)最有前景的隔膜。然而,SPEs在ASSLMBs中的实际应用受到其低离子电导率和机械强度的限制。在此,我们开发了一种三维(3D)互连的MXene(TiCT)网络和LiLaZrTaO(LLZTO)颗粒协同增强的聚环氧乙烷(PEO)基SPE,其中通过TiCT的吸电子基团(Ti-F、-O-)与Li之间的路易斯酸碱相互作用,Li与PEO中醚氧的缔合可被显著削弱。此外,锂盐中的TFSI可被TiCT的Ti-OH形成的氢键固定。3D互连的TiCT网络不仅减轻了无机填料(LLZTO)的团聚,还提高了复合固体电解质(CSE)的机械强度。因此,组装的Li||CSE||Li对称电池在35℃(0.1 mA cm、0.1 mAh cm下稳定循环超过3000小时)和-2℃(0.05 mA cm、0.05 mAh cm下稳定循环超过2500小时)表现出优异的循环稳定性。令人印象深刻的是,LiFePO||CSE||Li电池在35℃下以0.3 C循环300次后,放电容量高达145.3 mAh/g。这种合理的结构设计为制备高性能锂金属电池固态电解质提供了一种新策略。