Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China.
International Research Center of Big Data for Sustainable Development Goals, Beijing, 100094, China.
Sci Data. 2024 May 2;11(1):439. doi: 10.1038/s41597-024-03273-5.
China, as the world's biggest soybean importer and fourth-largest producer, needs accurate mapping of its planting areas for global food supply stability. The challenge lies in gathering and collating ground survey data for different crops. We proposed a spatiotemporal migration method leveraging vegetation indices' temporal characteristics. This method uses a feature space of six integrals from the crops' phenological curves and a concavity-convexity index to distinguish soybean and non-soybean samples in cropland. Using a limited number of actual samples and our method, we extracted features from optical time-series images throughout the soybean growing season. The cloud and rain-affected data were supplemented with SAR data. We then used the random forest algorithm for classification. Consequently, we developed the 10-meter resolution ChinaSoybean10 maps for the ten primary soybean-producing provinces from 2019 to 2022. The map showed an overall accuracy of about 93%, aligning significantly with the statistical yearbook data, confirming its reliability. This research aids soybean growth monitoring, yield estimation, strategy development, resource management, and food scarcity mitigation, and promotes sustainable agriculture.
中国作为全球最大的大豆进口国和第四大生产国,需要对其种植面积进行精确测绘,以确保全球粮食供应稳定。然而,这一目标面临着收集和整理不同作物地面调查数据的挑战。为此,我们提出了一种利用植被指数时间特征的时空迁移方法。该方法使用作物物候曲线的六个积分特征空间和凹凸指数来区分农田中的大豆和非大豆样本。我们使用有限数量的实际样本和我们的方法,从整个大豆生长季节的光学时间序列图像中提取特征。利用 SAR 数据补充受云和雨影响的数据。然后,我们使用随机森林算法进行分类。最终,我们开发了 2019 年至 2022 年中国十大主要大豆生产省份的 10 米分辨率 ChinaSoybean10 地图。该地图的总体精度约为 93%,与统计年鉴数据高度吻合,证明了其可靠性。本研究有助于大豆生长监测、产量估算、策略制定、资源管理和缓解粮食短缺,促进可持续农业发展。