Suppr超能文献

用可解释的数据挖掘方法揭开 COVID-19 死亡率原因的神秘面纱。

Demystifying COVID-19 mortality causes with interpretable data mining.

机构信息

School of Computer Science and Engineering, Central South University, Changsha, Hunan, China.

Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.

出版信息

Sci Rep. 2024 May 2;14(1):10076. doi: 10.1038/s41598-024-60841-w.

Abstract

While COVID-19 becomes periodical, old individuals remain vulnerable to severe disease with high mortality. Although there have been some studies on revealing different risk factors affecting the death of COVID-19 patients, researchers rarely provide a comprehensive analysis to reveal the relationships and interactive effects of the risk factors of COVID-19 mortality, especially in the elderly. Through retrospectively including 1917 COVID-19 patients (102 were dead) admitted to Xiangya Hospital from December 2022 to March 2023, we used the association rule mining method to identify the risk factors leading causes of death among the elderly. Firstly, we used the Affinity Propagation clustering to extract key features from the dataset. Then, we applied the Apriori Algorithm to obtain 6 groups of abnormal feature combinations with significant increments in mortality rate. The results showed a relationship between the number of abnormal feature combinations and mortality rates within different groups. Patients with "C-reactive protein > 8 mg/L", "neutrophils percentage > 75.0 %", "lymphocytes percentage < 20%", and "albumin < 40 g/L" have a 2 mortality rate than the basic one. When the characteristics of "D-dimer > 0.5 mg/L" and "WBC > /L" are continuously included in this foundation, the mortality rate can be increased to 3 or 4 . In addition, we also found that liver and kidney diseases significantly affect patient mortality, and the mortality rate can be as high as 100%. These findings can support auxiliary diagnosis and treatment to facilitate early intervention in patients, thereby reducing patient mortality.

摘要

虽然 COVID-19 已成为季节性疾病,但老年人仍然容易受到严重疾病和高死亡率的影响。虽然已经有一些研究揭示了影响 COVID-19 患者死亡的不同风险因素,但研究人员很少提供全面的分析来揭示 COVID-19 死亡率的风险因素之间的关系和相互作用,特别是在老年人中。通过回顾性纳入 2023 年 1 月至 3 月期间湘雅医院收治的 1917 例 COVID-19 患者(102 例死亡),我们使用关联规则挖掘方法来确定导致老年人死亡的危险因素。首先,我们使用亲和传播聚类从数据集中提取关键特征。然后,我们应用 Apriori 算法获得了 6 组死亡率显著增加的异常特征组合。结果表明,不同组内异常特征组合的数量与死亡率之间存在关系。C-反应蛋白>8mg/L、中性粒细胞百分比>75.0%、淋巴细胞百分比<20%和白蛋白<40g/L 的患者的死亡率比基础死亡率高 2 倍。当特征“D-二聚体>0.5mg/L”和“白细胞计数> /L”不断包含在这一基础上时,死亡率可增加到 3 倍或 4 倍。此外,我们还发现肝脏和肾脏疾病显著影响患者的死亡率,死亡率高达 100%。这些发现可以支持辅助诊断和治疗,从而促进对患者的早期干预,降低患者的死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b63/11066015/bfb7d8ae4c20/41598_2024_60841_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验