Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, India.
Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
Cell Mol Life Sci. 2024 May 2;81(1):203. doi: 10.1007/s00018-024-05200-8.
Nitrogen metabolism of M. tuberculosis is critical for its survival in infected host cells. M. tuberculosis has evolved sophisticated strategies to switch between de novo synthesis and uptake of various amino acids from host cells for metabolic demands. Pyridoxal phosphate-dependent histidinol phosphate aminotransferase-HspAT enzyme is critically required for histidine biosynthesis. HspAT is involved in metabolic synthesis of histidine, phenylalanine, tyrosine, tryptophan, and novobiocin. We showed that M. tuberculosis Rv2231c is a conserved enzyme with HspAT activity. Rv2231c is a monomeric globular protein that contains α-helices and β-sheets. It is a secretory and cell wall-localized protein that regulates critical pathogenic attributes. Rv2231c enhances the survival and virulence of recombinant M. smegmatis in infected RAW264.7 macrophage cells. Rv2231c is recognized by the TLR4 innate immune receptor and modulates the host immune response by suppressing the secretion of the antibacterial pro-inflammatory cytokines TNF, IL-12, and IL-6. It also inhibits the expression of co-stimulatory molecules CD80 and CD86 along with antigen presenting molecule MHC-I on macrophage and suppresses reactive nitrogen species formation, thereby promoting M2 macrophage polarization. Recombinant M. smegmatis expressing Rv2231c inhibited apoptosis in macrophages, promoting efficient bacterial survival and proliferation, thereby increasing virulence. Our results indicate that Rv2231c is a moonlighting protein that regulates multiple functions of M. tuberculosis pathophysiology to increase its virulence. These mechanistic insights can be used to better understand the pathogenesis of M. tuberculosis and to design strategies for tuberculosis mitigation.
结核分枝杆菌的氮代谢对于其在感染宿主细胞中的存活至关重要。结核分枝杆菌已经进化出复杂的策略,以根据代谢需求在从头合成和从宿主细胞摄取各种氨基酸之间进行切换。依赖吡哆醛磷酸的组氨酸磷酸转氨酶-HspAT 酶对于组氨酸生物合成至关重要。HspAT 参与组氨酸、苯丙氨酸、酪氨酸、色氨酸和新生霉素的代谢合成。我们表明,结核分枝杆菌 Rv2231c 是一种具有 HspAT 活性的保守酶。Rv2231c 是一种单体球状蛋白,含有α-螺旋和β-折叠。它是一种分泌蛋白和细胞壁定位蛋白,调节关键的致病属性。Rv2231c 增强了重组 M. smegmatis 在感染 RAW264.7 巨噬细胞中的存活和毒力。Rv2231c 被 TLR4 先天免疫受体识别,并通过抑制抗菌促炎细胞因子 TNF、IL-12 和 IL-6 的分泌来调节宿主免疫反应。它还抑制巨噬细胞上共刺激分子 CD80 和 CD86 以及抗原呈递分子 MHC-I 的表达,并抑制活性氮物种的形成,从而促进 M2 巨噬细胞极化。表达 Rv2231c 的重组 M. smegmatis 抑制了巨噬细胞中的细胞凋亡,促进了细菌的有效存活和增殖,从而增加了毒力。我们的结果表明,Rv2231c 是一种多功能蛋白,调节结核分枝杆菌病理生理学的多种功能,以增加其毒力。这些机制上的见解可用于更好地理解结核分枝杆菌的发病机制,并设计减轻结核病的策略。