Fu Xuancheng, Hu Xiaoran
Department of Chemistry, BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States.
ACS Appl Bio Mater. 2024 Dec 16;7(12):8040-8058. doi: 10.1021/acsabm.4c00150. Epub 2024 May 2.
Ultrasound has gained prominence in biomedical applications due to its noninvasive nature and ability to penetrate deep tissue with spatial and temporal resolution. The burgeoning field of ultrasound-responsive prodrug systems exploits the mechanical and chemical effects of ultrasonication for the controlled activation of prodrugs. In polymer mechanochemistry, materials scientists exploit the sonomechanical effect of acoustic cavitation to mechanochemically activate force-sensitive prodrugs. On the other hand, researchers in the field of sonodynamic therapy adopt fundamentally distinct methodologies, utilizing the sonochemical effect (e.g., generation of reactive oxygen species) of ultrasound in the presence of sonosensitizers to induce chemical transformations that activate prodrugs. This cross-disciplinary review comprehensively examines these two divergent yet interrelated approaches, both of which originated from acoustic cavitation. It highlights molecular and materials design strategies and potential applications in diverse therapeutic contexts, from chemotherapy to immunotherapy and gene therapy methods, and discusses future directions in this rapidly advancing domain.
由于其非侵入性以及能够以空间和时间分辨率穿透深层组织的能力,超声在生物医学应用中已变得日益重要。超声响应前药系统这一新兴领域利用超声处理的机械和化学效应来实现前药的可控激活。在高分子机械化学中,材料科学家利用声空化的声机械效应来机械化学激活力敏前药。另一方面,声动力疗法领域的研究人员采用了截然不同的方法,在声敏剂存在的情况下利用超声的声化学效应(例如活性氧的产生)来诱导激活前药的化学转化。这篇跨学科综述全面审视了这两种虽不同但相互关联的方法,它们均源自声空化。它重点介绍了分子和材料设计策略以及在从化疗到免疫疗法和基因治疗方法等各种治疗背景下的潜在应用,并讨论了这个快速发展领域的未来方向。
ACS Appl Bio Mater. 2024-12-16
Proc Natl Acad Sci U S A. 2022-1-25
ACS Appl Bio Mater. 2021-4-19
J Mater Chem B. 2021-12-22
Int J Nanomedicine. 2024
Front Chem. 2024-10-16
J Control Release. 2023-10-27
Angew Chem Int Ed Engl. 2024-3-22
Proc Natl Acad Sci U S A. 2023-9-26