Suppr超能文献

基于胶体氮化铝量子点的高波长选择性自供电日盲紫外光电探测器

Highly Wavelength-Selective Self-Powered Solar-Blind Ultraviolet Photodetector Based on Colloidal Aluminum Nitride Quantum Dots.

作者信息

Wu Hao, Wu Chao, Cheng Xiaoyu, Guo Chenyu, Hu Jun, Guo Daoyou, He Sailing

机构信息

National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China.

School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, 310015, P. R. China.

出版信息

Small. 2025 Apr;21(16):e2312127. doi: 10.1002/smll.202312127. Epub 2024 May 2.

Abstract

Colloidal quantum dots are semiconductor nanocrystals endowed with unique optoelectronic properties. A major challenge to the field is the lack of methods for synthesizing quantum dots exhibit strong photo-response in the deep-ultraviolet (DUV) band. Here, a facile solution-processed method is presented for synthesizing ultrawide bandgap aluminium nitride quantum dots (AlN QDs) showing distinguished UV-B photoluminescence. Combined with the strong optical response in solar blind band, a solution-processed, self-powered AlN-QDs/β-GaO solar-blind photodetector is demonstrated. The photodetector is characterized with a high responsivity of 1.6 mA W under 0 V bias and specific detectivity 7.60 × 10 Jones under 5 V bias voltage with good solar blind selectivity. Given the solution-processed capability of the devices and extraordinary properties of AlN QDs, this study anticipates the utilization of AlN QDs will open up unique opportunities for cost-effective industrial production of high-performance DUV optoelectronics for large-scale applications.

摘要

胶体量子点是具有独特光电特性的半导体纳米晶体。该领域面临的一个主要挑战是缺乏合成在深紫外(DUV)波段具有强光响应的量子点的方法。在此,提出了一种简便的溶液处理方法来合成具有显著紫外B光致发光的超宽带隙氮化铝量子点(AlN量子点)。结合日盲波段的强光响应,展示了一种溶液处理的自供电AlN量子点/β-GaO日盲光电探测器。该光电探测器在0 V偏压下具有1.6 mA W的高响应度,在5 V偏压下具有7.60×10琼斯的比探测率,且具有良好的日盲选择性。鉴于器件的溶液处理能力和AlN量子点的优异性能,本研究预计AlN量子点的应用将为大规模应用的高性能深紫外光电器件的经济高效工业生产带来独特机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验