Sridharan Bhuvanesh, Sinha Animesh, Bardhan Jai, Modee Rohit, Ehara Masahiro, Priyakumar U Deva
Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India.
Research Center for Computational Science, Institute for Molecular Science, Okazaki, Japan.
J Comput Chem. 2024 Aug 15;45(22):1886-1898. doi: 10.1002/jcc.27354. Epub 2024 May 2.
Reinforcement learning (RL) has been applied to various domains in computational chemistry and has found wide-spread success. In this review, we first motivate the application of RL to chemistry and list some broad application domains, for example, molecule generation, geometry optimization, and retrosynthetic pathway search. We set up some of the formalism associated with reinforcement learning that should help the reader translate their chemistry problems into a form where RL can be used to solve them. We then discuss the solution formulations and algorithms proposed in recent literature for these problems, the advantages of one over the other, together with the necessary details of the RL algorithms they employ. This article should help the reader understand the state of RL applications in chemistry, learn about some relevant actively-researched open problems, gain insight into how RL can be used to approach them and hopefully inspire innovative RL applications in Chemistry.
强化学习(RL)已应用于计算化学的各个领域,并取得了广泛的成功。在本综述中,我们首先阐述将强化学习应用于化学领域的动机,并列举一些广泛的应用领域,例如分子生成、几何优化和逆合成途径搜索。我们建立了一些与强化学习相关的形式体系,这应有助于读者将他们的化学问题转化为可以使用强化学习来解决的形式。然后,我们讨论了近期文献中针对这些问题提出的解决方案和算法、它们各自的优势,以及所采用的强化学习算法的必要细节。本文应有助于读者了解强化学习在化学领域的应用现状,了解一些相关的积极研究的开放问题,深入了解如何使用强化学习来解决这些问题,并有望激发化学领域创新的强化学习应用。