Suppr超能文献

将定量构效关系(QSAR)建模与强化学习相结合用于发现脾酪氨酸激酶(Syk)抑制剂。

Integrating QSAR modelling with reinforcement learning for Syk inhibitor discovery.

作者信息

Zavadskaya Maria, Orlova Anastasia, Dmitrenko Andrei, Vinogradov Vladimir

机构信息

Center for AI in Chemistry, ITMO University, Lomonosova St. 9, St. Petersburg, 197101, Russia.

出版信息

J Cheminform. 2025 Apr 15;17(1):52. doi: 10.1186/s13321-025-00998-2.

Abstract

Spleen tyrosine kinase (Syk) is a crucial mediator of inflammatory processes and a promising therapeutic target for the management of autoimmune disorders, such as immune thrombocytopenia. While several Syk inhibitors are known to date, their efficacy and safety profiles remain suboptimal, necessitating the exploration of novel compounds. The study introduces a novel deep reinforcement learning strategy for drug discovery, specifically designed to identify new Syk inhibitors. The approach integrates quantitative structure-activity relationship (QSAR) predictions with generative modelling, employing a stacking-ensemble model that achieves a correlation coefficient of 0.78. From over 78,000 molecules generated by this methodology, we identified 139 promising candidates with high predicted potency, binding affinity and optimal drug-likeness properties, demonstrating structural novelty while maintaining essential Syk inhibitor characteristics. Our approach establishes a versatile framework for accelerated drug discovery, which is particularly valuable for the development of rare disease therapeutics.Scientific contributionThe study presents the first application of QSAR-guided reinforcement learning for Syk inhibitor discovery, yielding structurally novel candidates with predicted high potency. The presented methodology can be adapted for other therapeutic targets, potentially accelerating the drug development process.

摘要

脾酪氨酸激酶(Syk)是炎症过程的关键介质,也是治疗自身免疫性疾病(如免疫性血小板减少症)的一个有前景的治疗靶点。虽然目前已知几种Syk抑制剂,但其疗效和安全性仍不尽人意,因此有必要探索新型化合物。该研究引入了一种用于药物发现的新型深度强化学习策略,专门设计用于识别新的Syk抑制剂。该方法将定量构效关系(QSAR)预测与生成模型相结合,采用堆叠集成模型,其相关系数达到0.78。通过这种方法生成的78000多个分子中,我们鉴定出139个具有高预测效力、结合亲和力和最佳类药性质的有前景的候选物,它们在保持Syk抑制剂基本特征的同时展示了结构新颖性。我们的方法建立了一个加速药物发现的通用框架,这对于罕见病治疗药物的开发尤其有价值。

科学贡献

该研究首次将QSAR引导的强化学习应用于Syk抑制剂的发现,产生了具有预测高效力的结构新颖的候选物。所提出的方法可适用于其他治疗靶点,有可能加速药物开发过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7947/11998205/2d98ec694ac2/13321_2025_998_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验