Suppr超能文献

高等认知理论的神经动力学基础:以嵌套短语的基础为例。

Neural dynamic foundations of a theory of higher cognition: the case of grounding nested phrases.

作者信息

Sabinasz Daniel, Richter Mathis, Schöner Gregor

机构信息

Institute for Neural Computation, Ruhr-University Bochum, Bochum, Germany.

Neuromorphic Computing Lab, Intel Germany GmbH, Feldkirchen, Germany.

出版信息

Cogn Neurodyn. 2024 Apr;18(2):557-579. doi: 10.1007/s11571-023-10007-7. Epub 2023 Oct 4.

Abstract

Because cognitive competences emerge in evolution and development from the sensory-motor domain, we seek a neural process account for higher cognition in which all representations are necessarily grounded in perception and action. The challenge is to understand how hallmarks of higher cognition, productivity, systematicity, and compositionality, may emerge from such a bottom-up approach. To address this challenge, we present key ideas from Dynamic Field Theory which postulates that neural populations are organized by recurrent connectivity to create stable localist representations. Dynamic instabilities enable the autonomous generation of sequences of mental states. The capacity to apply neural circuitry across broad sets of inputs that emulates the function call postulated in symbolic computation emerges through coordinate transforms implemented in neural gain fields. We show how binding localist neural representations through a shared index dimension enables conceptual structure, in which the interdependence among components of a representation is flexibly expressed. We demonstrate these principles in a neural dynamic architecture that represents and perceptually grounds nested relational and action phrases. Sequences of neural processing steps are generated autonomously to attentionally select the referenced objects and events in a manner that is sensitive to their interdependencies. This solves the problem of 2 and the massive binding problem in expressions such as "the small tree that is to the left of the lake which is to the left of the large tree". We extend earlier work by incorporating new types of grammatical constructions and a larger vocabulary. We discuss the DFT framework relative to other neural process accounts of higher cognition and assess the scope and challenges of such neural theories.

摘要

由于认知能力在进化和发展过程中从感觉运动领域中浮现出来,我们寻求一种关于高级认知的神经过程解释,即所有表征都必然基于感知和行动。挑战在于理解高级认知的特征——生成性、系统性和组合性——如何从这种自下而上的方法中产生。为了应对这一挑战,我们介绍了动态场论的关键思想,该理论假设神经群体通过循环连接进行组织,以创建稳定的局部主义表征。动态不稳定性使心理状态序列能够自主生成。通过神经增益场中实现的坐标变换,能够将神经回路应用于广泛的输入集,从而模拟符号计算中假设的函数调用功能。我们展示了如何通过共享索引维度绑定局部主义神经表征,从而实现概念结构,其中表征组件之间的相互依赖关系能够灵活表达。我们在一个神经动态架构中演示了这些原则,该架构对嵌套的关系和动作短语进行表征并基于感知。神经处理步骤序列能够自主生成,以便以对其相互依赖关系敏感的方式注意力性地选择被引用的对象和事件。这解决了诸如“在大树左边的湖左边的小树”这类表达式中的二元问题和大规模绑定问题。我们通过纳入新型语法结构和更大的词汇量扩展了早期的工作。我们讨论了与其他高级认知神经过程解释相关的动态场论框架,并评估了此类神经理论的范围和挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be84/11061088/72a4a8e3f2e3/11571_2023_10007_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验