Grieben Raul, Tekülve Jan, Zibner Stephan K U, Lins Jonas, Schneegans Sebastian, Schöner Gregor
Institut für Neuroinformatik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
Atten Percept Psychophys. 2020 Feb;82(2):775-798. doi: 10.3758/s13414-019-01898-y.
Any object-oriented action requires that the object be first brought into the attentional foreground, often through visual search. Outside the laboratory, this would always take place in the presence of a scene representation acquired from ongoing visual exploration. The interaction of scene memory with visual search is still not completely understood. Feature integration theory (FIT) has shaped both research on visual search, emphasizing the scaling of search times with set size when searches entail feature conjunctions, and research on visual working memory through the change detection paradigm. Despite its neural motivation, there is no consistently neural process account of FIT in both its dimensions. We propose such an account that integrates (1) visual exploration and the building of scene memory, (2) the attentional detection of visual transients and the extraction of search cues, and (3) visual search itself. The model uses dynamic field theory in which networks of neural dynamic populations supporting stable activation states are coupled to generate sequences of processing steps. The neural architecture accounts for basic findings in visual search and proposes a concrete mechanism for the integration of working memory into the search process. In a behavioral experiment, we address the long-standing question of whether both the overall speed and the efficiency of visual search can be improved by scene memory. We find both effects and provide model fits of the behavioral results. In a second experiment, we show that the increase in efficiency is fragile, and trace that fragility to the resetting of spatial working memory.
任何面向对象的行为都要求首先将对象带入注意力的焦点,这通常通过视觉搜索来实现。在实验室之外,这总是会在从正在进行的视觉探索中获取的场景表征的背景下发生。场景记忆与视觉搜索之间的相互作用仍未被完全理解。特征整合理论(FIT)塑造了视觉搜索研究,强调当搜索涉及特征结合时搜索时间随集合大小的变化,同时也通过变化检测范式塑造了视觉工作记忆研究。尽管有其神经学动机,但在其两个维度上都没有关于FIT的一致的神经过程解释。我们提出了这样一种解释,它整合了:(1)视觉探索和场景记忆的构建;(2)对视觉瞬变的注意力检测和搜索线索的提取;(3)视觉搜索本身。该模型使用动态场理论,其中支持稳定激活状态的神经动态群体网络相互耦合,以生成处理步骤序列。这种神经架构解释了视觉搜索中的基本发现,并提出了一种将工作记忆整合到搜索过程中的具体机制。在一项行为实验中,我们解决了一个长期存在的问题,即场景记忆是否能提高视觉搜索的整体速度和效率。我们发现了这两种效果,并对行为结果进行了模型拟合。在第二项实验中,我们表明效率的提高是脆弱的,并将这种脆弱性追溯到空间工作记忆的重置。